Category Archives: Hacking

Turning diamonds’ defects into long-term 3-D data storage


With the amount of data storage required for our daily lives growing and growing, and currently available technology being almost saturated, we’re in desperate need of a new method of data storage. The standard magnetic hard disk drive (HDD) – like what’s probably in your laptop computer – has reached its limit, holding a maximum of a few terabytes. Standard optical disk technologies, like compact disc (CD), digital video disc (DVD) and Blu-ray disc, are restricted by their two-dimensional nature – they just store data in one plane – and also by a physical law called the diffraction limit, based on the wavelength of light, that constrains our ability to focus light to a very small volume.

And then there’s the lifetime of the memory itself to consider. HDDs, as we’ve all experienced in our personal lives, may last only a few years before things start to behave strangely or just fail outright. DVDs and similar media are advertised as having a storage lifetime of hundreds of years. In practice this may be cut down to a few decades, assuming the disk is not rewritable. Rewritable disks degrade on each rewrite.

Without better solutions, we face financial and technological catastrophes as our current storage media reach their limits. How can we store large amounts of data in a way that’s secure for a long time and can be reused or recycled?

In our lab, we’re experimenting with a perhaps unexpected memory material you may even be wearing on your ring finger right now: diamond. On the atomic level, these crystals are extremely orderly – but sometimes defects arise. We’re exploiting these defects as a possible way to store information in three dimensions.

Focusing on tiny defects

One approach to improving data storage has been to continue in the direction of optical memory, but extend it to multiple dimensions. Instead of writing the data to a surface, write it to a volume; make your bits three-dimensional. The data are still limited by the physical inability to focus light to a very small space, but you now have access to an additional dimension in which to store the data. Some methods also polarize the light, giving you even more dimensions for data storage. However, most of these methods are not rewritable.

Here’s where the diamonds come in.

The orderly structure of a diamond, but with a vacancy and a nitrogen replacing two of the carbon atoms.
Zas2000

A diamond is supposed to be a pure well-ordered array of carbon atoms. Under an electron microscope it usually looks like a neatly arranged three-dimensional lattice. But occasionally there is a break in the order and a carbon atom is missing. This is what is known as a vacancy. Even further tainting the diamond, sometimes a nitrogen atom will take the place of a carbon atom. When a vacancy and a nitrogen atom are next to each other, the composite defect is called a nitrogen vacancy, or NV, center. These types of defects are always present to some degree, even in natural diamonds. In large concentrations, NV centers can impart a characteristic red color to the diamond that contains them.

This defect is having a huge impact in physics and chemistry right now. Researchers have used it to detect the unique nuclear magnetic resonance signatures of single proteins and are probing it in a variety of cutting-edge quantum mechanical experiments.

Nitrogen vacancy centers have a tendency to trap electrons, but the electron can also be forced out of the defect by a laser pulse. For many researchers, the defects are interesting only when they’re holding on to electrons. So for them, the fact that the defects can release the electrons, too, is a problem.

But in our lab, we instead look at these nitrogen vacancy centers as a potential benefit. We think of each one as a nanoscopic “bit.” If the defect has an extra electron, the bit is a one. If it doesn’t have an extra electron, the bit is a zero. This electron yes/no, on/off, one/zero property opens the door for turning the NV center’s charge state into the basis for using diamonds as a long-term storage medium.

Starting from a blank ensemble of NV centers in a diamond (1), information can be written (2), erased (3), and rewritten (4).
Siddharth Dhomkar and Carlos A. Meriles, CC BY-ND

Turning the defect into a benefit

Previous experiments with this defect have demonstrated some properties that make diamond a good candidate for a memory platform.

First, researchers can selectively change the charge state of an individual defect so it either holds an electron or not. We’ve used a green laser pulse to assist in trapping an electron and a high-power red laser pulse to eject an electron from the defect. A low-power red laser pulse can help check if an electron is trapped or not. If left completely in the dark, the defects maintain their charged/discharged status virtually forever.

The NV centers can encode data on various levels.
Siddharth Dhomkar and Carlos A. Meriles, CC BY-ND

Our method is still diffraction limited, but is 3-D in the sense that we can charge and discharge the defects at any point inside of the diamond. We also present a sort of fourth dimension. Since the defects are so small and our laser is diffraction limited, we are technically charging and discharging many defects in a single pulse. By varying the duration of the laser pulse in a single region we can control the number of charged NV centers and consequently encode multiple bits of information.

Though one could use natural diamonds for these applications, we use artificially lab-grown diamonds. That way we can efficiently control the concentration of nitrogen vacancy centers in the diamond.

All these improvements add up to about 100 times enhancement in terms of bit density relative to the current DVD technology. That means we can encode all the information from a DVD into a diamond that takes up about one percent of the space.

Past just charge, to spin as well

If we could get beyond the diffraction limit of light, we could improve storage capacities even further. We have one novel proposal on this front.

A human cell, imaged on the right with super-resolution microscope.
Dr. Muthugapatti Kandasamy, CC BY-NC-ND

Nitrogen vacancy centers have also been used in the execution of what is called super-resolution microscopy to image things that are much smaller than the wavelength of light. However, since the super-resolution technique works on the same principles of charging and discharging the defect, it will cause unintentional alteration in the pattern that one wants to encode. Therefore, we won’t be able to use it as it is for memory storage application and we’d need to back up the already written data somehow during a read or write step.

Here we propose the idea of what we call charge-to-spin conversion; we temporarily encode the charge state of the defect in the spin state of the defect’s host nitrogen nucleus. Spin is a fundamental property of any elementary particle; it’s similar to its charge, and can be imagined as having a very tiny magnet permanently attached it.

While the charges are being adjusted to read/write the information as desired, the previously written information is well protected in the nitrogen spin state. Once the charges have encoded, the information can be back converted from the nitrogen spin to the charge state through another mechanism which we call spin-to-charge conversion.

With these advanced protocols, the storage capacity of a diamond would surpass what existing technologies can achieve. This is just a beginning, but these initial results provide us a potential way of storing huge amount of data in a brand new way. We’re looking forward to transform this beautiful quirk of physics into a vastly useful technology.

The Conversation

Siddharth Dhomkar, Postdoctoral Associate in Physics, City College of New York and Jacob Henshaw, Teaching Assistant in Physics, City College of New York

Supreme Court approves legal authority to gain unauthorized access to any computer


It just got a whole lot easier for local and federal law enforcement to gain unauthorized access to computers connected to the internet when the Supreme Court approved changes to the rules of criminal procedure recently. The changes have enabled warrants for searches of any remote computer system despite local laws, ownership and physical location.

These warrants are particularly important to computer crimes divisions since many investigations result in turning up anonymous hosts, or users who don’t share their true identity in any way.

Unless congress takes action beforehand, the new law goes into affect in December of 2016.

Showtime’s ‘Dark Net’ Uncovers Deep Web Internet Culture

Through the internet, the impact of technology on our lives is both unprecedented and undeniable.

From cyber relationships, S&M culture and child abuse to biohacking, content moderation and nootropics, Dark Net finally puts into moving pictures what blogs have been typing up a storm about for the past few years.

At first glance the show seems like your run-of-the-mill cyber culture documentary, but the topics being explored are of a much more taboo persuasion — and it’s not just the underground pedophile networks accessed via Tor we’re talking about.

While Dark Net covers a lot of ground in technology subculture, it also serves as a bit of a transhumanist playground, discussing cutting edge and controversial topics such as RFID chip implants and other biohacks, nootropics, artificial intelligence girlfriends, and more. The main topic, however, seems to be the nature of human relationships being altered, augmented, and even hindered by technology, and it’s not difficult to understand why.

Through the internet, the impact of technology on our lives is both unprecedented and undeniable. Exploring subcultures and trends such as sadomasochism, porn addiction, and even internet addiction, Dark Net attempts to bring to light some otherwise undisclosed topics the most people refuse to talk about openly.

Dark Net is on Showtime, Thursday nights.

Max Klaassen
Public enema xenomorphic robot from the dimension Zrgauddon.

Memetic Warfare and the Sixth Domain Part Three


Can an image, sound, video or string of words influence the human mind so strongly the mind is actually harmed or controlled? Cosmoso takes a look at technology and the theoretical future of psychological warfare with Part Three of an ongoing series. 

Click here for Part One.

Click here for Part Two.

A lot of the responses I got to the first two installments talked about religion being weaponized memes. People do fight and kill on behalf of their religions and memes play a large part in disseminating the message and information religions have to offer.

Curved bullet meme is a great one. Most of the comments I see associated with this image have to do with how dumb someone would have to be to believe it would work. Some people have an intuitive understanding of spacial relations. Some might have a level of education in physics or basic gun safety and feel alarm bells going off way before they’d try something this dumb. It’s a pretty dangerous idea to put out there, though, because a percentage of people the image reaches could try something stupid. Is it a viable memetic weapon? Possibly~! I present to you, the curved bullet meme.

How-to-curve-path-of-bullet

The dangers here should be obvious. The move starts with “begin trigger-pull with pistol pointed at chest (near heart)” and anyone who is taking it seriously beyond is Darwin Award material.

Whoever created this image has no intention of someone actually trying it. So, in order for someone to fall for this pretty obvious trick, they’d have to be pretty dumb. There is another way people fall for tricks, though.

There is more than one way to end up being a victim of a mindfuck and being ignorant is part of a lot of them but ignorance can actually be induced. In the case of religion, there are several giant pieces of information or ways of thinking that must be gotten all wrong before someone would have to believe that the earth is coming to an end in 2012, or the creator of the universe wants you to burn in hell for eternity for not following the rules. By trash talking religion in general, I’ve made a percentage of readers right now angry, and that’s the point. Even if you take all the other criticisms about religion out of the mix, we can all agree that religion puts its believers in the position of becoming upset or outraged by very simple graphics or text. As a non-believer, a lot of the things religious people say sound as silly to me as the curved bullet graphic seems to a well-trained marksman.

To oversimplify it further: religions are elaborate, bad advice. You can inoculate yourself against that kind of meme but the vast majority of people out there cling desperately, violently to some kind of doctrine that claims to answer one or more of the most unanswerable parts of life. When people feel relief wash over them, they are more easily duped into doing what it takes to keep their access to that feeling.

There are tons of non-religious little memes out there that simply mess with anyone who follows bad advice. It can be a prank but the pranks can get pretty destructive. Check out this image from the movie Fight Club:

Motor Oil

Thinking no one fell for this one? For one thing, it’s from a movie, and in the movie it was supposed to be a mean-spirited prank that maybe some people fell for. Go ahead and google “fertilize used motor oil”, though, and see how many people are out there asking questions about it. It may blow your mind…

Jonathan Howard
Jonathan is a freelance writer living in Brooklyn, NY

The future of Auto Theft


We live in a time where auto theft is incredibly impractical. Criminals in 2015 struggle to figure out how to get past electronic security and alarm systems,  reflecting an over 90% drop in NYC auto theft since the early 90’s. These days, even a successfully stolen vehicle can be recovered with GPS tracking and incidences of theft are often caught on video.

It might seem like convenience is weakness but since car theft is way down,  this might not hold true at the moment. The security holes that seem most vulnerable to exploitation revolve around a key fob. Fobs are those small black electronic keys that everyone uses to unlock their car these days.  They work by using A pre-determined electronic signal that must be authenticated by the CAN system. If the authentication checks out, the doors unlock. In newer cars, the engine will start via push button if the fob is in the immediate vicinity of the car so the driver doesn’t have to fish them out of her pocket.

Etymology of the word fob:  Written evidence of the word's usage has been traced to 1888. Almost no one uses a pocket watch these days but a fob was originally an ornament attached to a pocket watch chain. The word hung around as an ocassional, outdated way to refer to key chains. In the 80's, the consumer market was introduced to devices that allowed a car to be unlocked or started remotely. The small electronic device was easily attached to the conventional set of carkeys, and within a few years the term fob key was generally used to describe any electronic key entry system that stored a code in a device, including hotel keycards as well as the remote car unlocking device usually described by the word.
Let’s take a look at three ways a fob key can be hacked.

Recording FOB signals for replay. This is one of those urban legends that’s been around since at least 2008. The story goes: thieves record the key fob signal and can later replay it with a dummy fob. The car can’t tell the difference and unlocks/starts as if the correct key fob has been used. It’s easy for the thief to control the schedule and catch the victim unawares because it doesn’t have to interact with the fob in real time. Sounds like the most effective way to hack a key fob, right? Problem is, each signal is unique, created with an algorithm than includes time. If the devices are not synchronized the fob can’t open the lock. A recorded signal played back wouldn’t open the lock. The conventional wisdom is that the devices, proprietary knowledge and experience needed to make this method work are not worth a stolen car’s worth of risk. Secrets leak but honestly, a team organized enough to steal a car this way would be able to use the same skills to make a lot more money legally. Lastly, if you could reverse engineer and record fob signals the FBI would already be watching you. The demographic that used to steal cars in the 90’s were largely  not like the fast and furious franchise.  The idea that a huge tech security op could be thwarted isn’t necessarily far fetched but there are no recorded cases. Not one. For that to change, someone needs to figure out how the sync code is incorporated into the algorithm and apparently no one has.

Amplifying FOB signal to trigger auto unlock feature. Not only is this method genius but it is rumored to be already in use. Eyewitnesses claim to have seen this in use and it sparked theories about the methodology. Unlike recording a signal, amplification is a lot cheaper and requires almost no proprietary knowledge of the code to pull off. It works like this: A device picks up a range of frequencies that the key fob is giving off and increases the range. Some cars feature the ability to sense the authentic key fob in a five foot range and auto-unlock or autostart their ignitions. With a signal amp, the engine can theoretically be started if the real key fob is within 30 feet. So, the keys can be on your nightstand but the car thinks you are at the car door. The thief can then open the door, sit in the drivers seat and the ignition can be pushbutton triggered as if the key fob was in the car with the thief. I thought about repeating some of the anecdotes I found online about this method but none of them are confirmed. No one has tested it but it looks like a signal booster can be bought online for pretty cheap if you know what to buy($17 – $300). Last week, NYT ran a piece about signal boosting. You can read that here.

Random signal generator. So unique frequency codes means you can’t record  the signal and reuse it without a proprietary algorithm but signal amplification might not work on some systems in the near future. The rumors of it working successfully already have car companies working on a sensitive enough receiver that it would be sensitive to distortion and interference caused by the amp. But there are exceptions, where the signal is not random, such as a service codes. Manufacturers have overriding unlock codes and reset devices to assist with lost key fobs and maintenance/emergency cases. When these codes are leaked, they often open up a brief but large hole in security, during which thousands of cars can be swiped. The main reason it isn’t happening already is more about organized crime not being organized enough to plan and exploit that security hole. Or, you know, maybe the codes just haven’t leaked yet.

Hardware construction.

hackrfConstructing the hardware components needed takes specialized knowledge of hardware. Searching for information about this stuff if bound to attract NSA attention when followed by parts being ordered. The kind of guy who likes to sit in a workshop ordering parts and tinkering all day isn’t always the one who wants to go out and take risks with newer, higher-end cars. That is the kind of multifaceted thief NYC was famous for back before the numbers plunged in the 90’s but the hardware is becoming more and more esoteric. People are not as apt to work on devices that have such small parts on projects that run with such high risk. For that reason, there is more money to be made in producing a bunch of low-cost black market devices that are already calibrated and tested to work. Buying this device on the street and using it before selling it off again might leave a smaller trail than building it in a sketchy apartment-turned-lab that is sure to be searched if a heist goes wrong.

Paper trail & identity theft.

Technology has made it really difficult to even take the car int he first place but once you have a stolen car they are almost impossible to get rid of these days. There can be multiple tracking devices and serial number locations in one car and if the operation isn’t extremely current, the likelihood of the car being found in red hands goes up quickly.

Once the car is stolen, a tech-savvy thief would need special equipment to access the on-board computer and do things like disable the GPS system, take any additional tracking system offline, and disable tech support from manipulating the vehicle’s electronics. Equipment to hack the car’s CAN system has been expensive and shrouded in mystery for the last couple decades but in recent days the internet has united hackers and security researchers to create custom hardware like CANtact Device Lets you Hack a Car’s CPU for $60. 

 

Jonathan Howard
Jonathan is a freelance writer living in Brooklyn, NY

Revisiting the Death of Michael Hastings


Could emerging tech present new forensics in the suspicious early demise of controversial Rolling Stone reporter, Michael Hastings? How cheaper hardware and open-sourced coding could shed new light on a murder as the possibility of remotely hacking today’s cars gains traction.

Hacking your car might already be possible. This tweet by NYT tech writer, Nick Bilton, is a great example:

Weeks back, I wrote a short piece about CANtact, a $60 device that enables you  to interface with a car’s onboard computer through your laptop’s USB port. Eric Evenchick presented CANtact at Black Hat Asia 2015 security conference in Singapore. The onboard CPU of a motor-vehicle is called the CAN, for Controller Area Network. Evenchick hopes his device’s affordability will spur programmers to reverse engineer the firmware and proprietary languages various CAN systems use.

Read more about CANtact: CANtact Device Lets you Hack a Car’s CPU for $60

I got feedback on the CANtact story about a seemingly unrelated topic: The Death of Michael Hastings. Hastings was Rolling Stone and Buzzfeed contributor who became very vocal about the surveillance state when the  U.S. Department of Justice started investigating reporters in 2013. Hastings coined the term “war on journalism” when the Obama Administration sanctioned limitations on journalists ability to report when the White House considered it a security risk. Buzzfeed ran his last story, “Why Democrats Love to Spy On Americans”, June 7, 2013. Hastings is considered suspicious by many Americans after he died in an explosive, high -speed automobile accident, June 18, 2013, in Los Angeles, CA.

Check out one of the last interviews with Michael Hastings and scroll down for a description of the oft repeated conspiracy theory surrounding his untimely death.

The Michael Hastings Conspiracy Theory:

Unlike a lot of post-millennium conspiracy theories, which usually start online, this one actually began on television. Reporters were already contentious about the limitations the Obama admin. were attempting to impose and it seemed like extremely suspicious timing that one of the leaders of the criticism against censorship was suddenly killed. The internet ran with it and some Americans considered the crash as suspicious at the time. Public opinion is often without the merit of hard evidence, though, and this case was no different. Not everyone considered the media coverage unbiased, considering the political stake journalists had in the issue.

The first solid argument that Hasting didn’t die by accident came from Richard A. Clarke, a former U.S. National Coordinator for Security, Infrastructure Protection, and Counter-terrorism(what a title~!), who called the crash “consistent with a car cyber attack”. The conspiracy theory gestating around water coolers and message boards was truly born when Clarke went public with this outright accusation:

“There is reason to believe that intelligence agencies for major powers—including the United States—know how to remotely seize control of a car. So if there were a cyber attack on [Hastings’] car—and I’m not saying there was, I think whoever did it would probably get away with it.”

Next, WikiLeaks announced that Hastings reached out to a Wikileaks lawyer Jennifer Robinson only a few hours before the crash.

Army Staff Sergent Joe Biggs came forward with an email he thought might help in a murder investigation. The email was CCed to a few of Hastings’ colleagues, stating he was “onto a big story” and planned to “go off the radar”. Perhaps the most incriminating detail is that he warned the addressees of this email to expect a visit from the FBI. The FBI denied Hastings was being investigated in a formal press release.

LA Weekly admitted Hastings was preparing a new installment of what had been an ongoing story involving the CIA. Hastings’ wife, Elise Jordan, confirmed he had been working on a story profiling CIA Director John O. Brennan.

 

The case against foul play:

I have to admit, I got sucked in for a second but Cosmoso is a science blog and I personally believe an important part of science is to maintain rational skepticism. The details I listed above are the undisputed facts. You can research online and verify them. It might seem really likely that Hastings was onto something and silenced by some sort of foul play leading to a car accident but there is no hard evidence, no smoking gun, no suspects and nothing really proving he was a victim of murder.

The rumor online has always been that there are suspicious aspects to the explosion. Cars don’t always explode when they crash but Frank Markus director of Motor Trend said the ensuing fire after the crash was consistent with most high-speed car crashes. The usual conspiracy theorist reaction is to suspect this kind of testimony to have some advantage or involvement thus “proving” it biased. It’s pretty difficult to do that in the case of Frank Markus, who just directs a magazine and website about cars.

Hastings’ own family doesn’t seem to think the death was suspicious. His brother, Jonathan, later revealed Michael seemed “manic” in the days leading up to the crash. Elise Jordan, his wife told the press it was “just a really tragic accident”

A host of The Young Turks who was close with Hastings once said Hastings’ friends had noticed he was agitated and tense. Michael often complained that he was being followed and watched. It’s easy to dismiss the conspiracy theory when you consider it may have stemmed from the line of work he chose.

Maybe the government conspiracy angle is red herring.

Reporting on the FBI, the Military, the Whitehouse, or the CIA are what reporters do. People did it before and since. Those government organizations have accountability in ways that would make an assassination pretty unlikely.

If it wasn’t the government who would have wanted to kill Hastings?

A lot of people, it turns out. Hastings had publicly confirmed he received several death-threats after his infamous Rolling Stone article criticizing and exposing General McChrystal. Considering the United States long history of reactionary violence an alternate theory is that military personnel performed an unsanctioned hit on Hastings during a time when many right wing Americans considered the journalist unpatriotic.

Here’s where the tech comes into play:

Hastings had told USA Today his car had recently been “tampered with”, without any real explanation of what that means but most people in 2013 would assume it means physical tampering with the brakes or planting a bug. In any case he said he was scared and planned to leave town.

Now it’s only two years later, and people are starting to see how a little bit of inside knowledge of how the CAN computer works in a modern vehicle can be used to do some serious harm. We might never know if this was a murder, an assassination or an accident but hacking a car remotely seemed like a joke at the time; two years later no one is laughing.

Jonathan Howard
Jonathan is a freelance writer living in Brooklyn, NY

American Revolutionary Edward Snowden in the News this Week


Controversial hero of the information revolution to some, traitor to the American empire to others, Edward Snowden is popping up in headlines again.

A lot of Cosmoso might have caught the John Oliver interview.

The interview is an instant classic and will be talked about for a long time but it was also genuinely funny, with some unexpected chemistry between Oliver and Snowden. It also featured probably the second best extended tech metaphor involving dicks.

Silicon Valley

That’s right. I said second best.

Other superficial highlights include John Oliver losing his mind during the half hour before Snowden showed up late, the alarming but totally unsurprising ignorance of Americans during the man-on-the-street interviews about privacy and a concise but fleeting description of Snowden’s Patriotism for the layman.

 

Snowden Bust 2

The morning after the interview aired, another iconic moment in revolutionary journalism happened. Three, anonymous street artists erected a bust of Edward Snowden in Brooklyn, video and still pics documented exclusively by AnimalNewYork. The work was covered with a tarp and removed within twelve hours because it was put atop an existing war monument, and done without permission.

Update:

A hologram of Snowden is currently being shown in the spot where the bust was removed, courtesy of The Illuminator Art Collective who used two projections and a cloud of smoke  to show a likeness of Edward Snowden at the Revolutionary War memorial, releasing an accompanying statement:

“While the State may remove any material artifacts that speak in defiance against incumbent authoritarianism, the acts of resistance remain in the public consciousness, and it is in sharing that act of defiance that hope resides.”

Snowden Hologram

Jonathan Howard
Jonathan is a freelance writer living in Brooklyn, NY

CANtact Device Lets you Hack a Car’s CPU for $60


Right now, Eric Evenchick is presenting CANtact at Black Hat Asia 2015 security conference in Singapore. Cantact is a hardware interface that attaches to the car’s CPU at one end and a regular laptop at the other. He’s already figured out how to do several simple hacks. It may sound like a simple device but the pricey commercially-available on-board CPU interfaces have been a consistent obstacle to car security research.

Car Companies have a huge security hole that they have not publicly addressed. The only reason people don’t regularly computer hack motor-vehicles is a lack of commercially available hardware. Hacking a car’s electronic system is something only a few people would even have the equipment to learn. To become a specialized security researcher in this area you would have to have a car you are willing to seriously mess with, which is expensive in and of itself. Some people might have access to a clunker that was made recently enough to have a CPU but they can’t afford the $1,200 stock cable that your local car mechanic would have to run the pre-fab software provided my the manufacturer. Eric Evenchick spent the last year figuring out exactly what makes the hardware tick, so he could put it int he hands of security researchers for the price of a dinner at a fancy restaurant.

24-year-old Eric Evenchick calls the controversial device CANtact, and he’s going to present it today at Black Hat Asia security conference in Singapore, whether car companies like it or not. The code that comes on the board attached tot he cable is open source. He can get it as cheap as $60 and maybe it will sell through third parties for $100.  CANtact uses any USB interface to adapt to a car or truck’s OBD2 port at the other end. OBD2 ports usually connect under the dashboard and talk to the car or trucks CPU. In most modern vehicles, the complicated Controller Area Network, or CAN, controls  the windows, the brakes, the power-steering, the dashboard indicators and more. It’s something that can disable your car and most people shouldn’t mess with it just yet. Once peer-collaborated info breaks into the mainstream, Evenchick hopes customized CAN systems will be common practice.

“Auto manufacturers are not up to speed. They’re just behind the times. Car software is not built to the same standards as, say, a bank application. Or software coming out of Microsoft.” Ed Adams at Security Innovation, 2014

Is can hacking a security threat we’ll see in the future? Quite probably. Back in 2013 security researchers Chris Valasek and Charlie Miller used DARPA funding to demonstrate how possible it really is to affect steering and brakes once the CAN system is accessed.

In the controversial death of journalist Michael Hastings, some people suspected car-hacking. It’s never been proven but you can read a detailed examination of the evidence in the Cosmoso.net article: Revisiting the Death of Michael Hastings

Evenchick is not trying to allow hackers to more easily hack cars. Instead he claims more affordable gadgetry will improve security, which seems to be the way tenuous relationship of security culture and hacking has always gone. In the test described in the link to the forbes article above, Valasek and Miller rewired a $150 ECOM cable to access and test vehicles’ OBD2 ports. CANtact comes out of the box ready to do what Valasek and Miller had to stay up late nights perfecting.

Anyone who attended Black Hat Asia, or can get a hold of any video of Evenchick’s presentation can contact Jon Howard: contact.jonhoward@gmail.com
Jonathan Howard
Jonathan is a freelance writer living in Brooklyn, NY

The Computer of the Future is…. Vague.


Quantum Computer prototypes make mistakes. It’s in their nature. Can redundancy correct them?

Quantum memory promises speed combined with energy efficiency. If made viable it will be used in phones, laptops and other devices and give us all faster, more trustworthy tech which will require less power to operate.  Before we see it applied, the hardware requires redundant memory cells to check and double-check it’s own errors.

All indications show quantum tech is poised to usher the next round of truly revolutionary devices but first, scientists must solve the problem of the memory cells saving the wrong answer. Quantum physicists must redesign circuitry that exploits quantum behavior. The current memory cell is called a Qubit. The Qubit takes advantage of quantum mechanics to transfer data at an almost instantaneous rate, but the data is sometimes corrupted with errors. The Qubit is vulnerable to errors because it is physically sensitive to small changes in the environment it physically exists in. It’s been difficult to solve this problem because it is a hardware issue, not a software design issue. UC Santa Barbara’s physics professor John Martinis’ lab is dedicated to finding a workaround that can move forward without tackling the actual errors. They are working on a self-correcting Qubit.

The latest design they’ve developed at Martinis’ Lab is quantum circuitry that repeatedly self-checks for errors and suppresses the statistical mistake. Saving data to mutliple Qubits and empowering the overall system with that kind of desirable reliability we’ve come to expect from non-quantum digital computers. Since an error-free Qubit seemed last week to be a difficult hurdle, this new breakthrough seems to mean we are amazingly close to a far-reaching breakthrough.

Julian Kelly is a grad student and co-lead author published in Nature Journal:

“One of the biggest challenges in quantum computing is that qubits are inherently faulty so if you store some information in them, they’ll forget it.”

Bit flipping is the problem dejour in smaller, faster computers.

Last week I wrote about a hardware design problem called bit flipping, where a classic, non-quantum computer has this same problem of unreliable data. In effort to make a smaller DRAM chip, designers created an environment where the field around one bit storage location could be strong enough to actually change the value of the bit storage location next to it. You can read about that design flaw and the hackers who proved it could be exploited to gain system admin privileges in otherwise secure servers, here.

Bit flipping also applies to this issue in quantum computing. Quantum computers don’t just save information in binary(“yes/no”, or “true/false”) positions.  Qubits can be in any or even all positions at once, because they are storing value in multiple dimensions. It’s called “superpositioning,” and it’s the very reason why quantum computers have the kind of computational prowess they do, but ironically this characteristic also makes Qubits prone to bit flipping. Just being around atoms and energy transference is enough to create unstable environments and thus unreliable for data storage.

“It’s hard to process information if it disappears.” ~ Julian Kelly.

Along with Rami Barends, staff scientist Austin Fowler and others in the Martinis Group, Julian Kelly is making a data storage scheme where several qubits work in conjunction to redundantly preserve information. Information is stored across several qubits in a chip that is hard-wired to also check of the odd-man-out error. So, while each Qubit is unreliable, the chip itself can be trusted to store data for longer and with less, hopefully, no errors.

It isn’t a new idea but this is the first time it’s been applied. The device they designed is small, in terms of data storage, but it works as designed. It corrects its own errors. The vision we all have of a working quantum computer able to process a sick amount of data in an impressively short time? That will require something in the neighborhood of  a hundred million Qubits and each of the Qubits will be redundantly  self-checking to prevent errors.

Austin Fowler spoke to Phys.org about the firmware embedded in this new quantum error detection system, calling it surface code. It relies on the measurement of change between a duplication and the original bit, as opposed to simlpy comparing a copy of the same info. This measurement of change instead of comparison of duplicates is called parity recognition, and it is unique to quantum data storage. The original info being preserved in the Qubits is actually unobserved, which is a key aspect of quantum data.

“You can’t measure a quantum state, and expect it to still be quantum,” explained Barends.

As in any discussion of quantum physics, the act of observation has the power to change the value of the bit. In order to truly duplicate the data the way classical computing does in error detection, the bit would have to be examined, which in and of itself would potentially cause a bitflip, corrupting the original bit. The device developed at Martini’s U of C Santa Barbara lab

This project is a groundbreaking way of applying physical and theoretical quantum computing because it is using the phsycial Qubit chip and a logic circuit that applies quantum theory as an algorithm. The results being a viable way of storing data prove that several otherwise untested quantum theories are real and not just logically sound. Ideas in quantum theory that have been pondered for decades are now proven to work in the real world!

What happens next?

Phase flips:

Martinis Lab will be continuing it’s tests in effort to refine and  develop this approach. While the bit flip errors seemed to have been solved with this new design, there is a new type of error not found in classical computing that has yet to be solved: the  phase-flip. Phase-flips might be a whole other article and until Quantum physicists solve them there is no rush for the layman to understand.

Stress tests:

The team is also currently running the error correction cycle for longer and longer periods while monitoring the devices integrity and behavior to see what will happen. Suffice to say, there are a few more types of errors than it may appear, despite this breakthrough.

Corporate sponsorship:

As if there was any doubt about funding…. Google has approached Martinis Lab and offered them support in effort to speed up the day when quantum computers stomp into the mainstream.

Jonathan Howard
Jonathan is a freelance writer living in Brooklyn, NY

Examining The Apple iPhone Planned Obsolescence Conspiracy


Apple has the money and the know how… are they making your old iPhone suck through planned obsolescence just to force you into the checkout line for a new one?

Planned Obsolescence isn’t just a conspiracy theory. You can read the 1932 pamphlet, widely-considered the origin of the concept, here. The argument in favor of it is it’s effect on the economy; more products being produced and sold means an active, thriving market. Of course there is an obvious ethical problem of selling people a product that won’t continue to work as it should for as long as it should. Several companies openly admit they do it. For Apple, it works like this: Whenever a new iPhone comes out, the previous model gets buggy, slow and unreliable. Apple dumps money into a new, near perfect ad campaign and the entire first world and beyond irrationally feels silly for not already owning one, even before it’s available. Each release marks the more expensive iPhone with capabilities the last one can’t touch. This is already a great marketing plan and I’m not criticizing Apple’s ability to pull it off as described. The problem is planned obsolescence; some iPhone owners notice the older model craps out on them JUST as the newest iPhone hits the retail shops. Apple has the money and the know how… are they making your old iPhone suck just to force you into the checkout line for a new one?

Full disclosure, I’m biased: I owned an iphone for long enough to live through a new product release and mine did, indeed, crap out as described above. Slow, buggy, and unreliable it was. With that anecdote under my belt I might be satisfied to call this e-rumor totally true but in the interest of science I collected further evidence. I combed the messageboards to see who had good points and who is just the regular internet nutjob with a stupid theory. To examine the evidence, I’m gonna start with this fact:

Fact 1: Apple’s product announcements and new product releases come at regular intervals. So, if the old iPhones stop working correctly at that same interval there would be a coinciding pattern. The tricky part is finding the data but the pattern of release dates is a good place to start because it is so clear. Other companies could be doing this type of fuckery but it would be harder to track. Not only does Apple time their releases but they do it at a faster pace than most. The new iPhones tend to come out once a year but studies show people keep their phones for about 2-3 years if they are not prompted or coerced to purchase a newer model.

Fact 2: Yes, it’s possible. There are so many ways the company would be able to slow or disable last year’s iPhone. It could happen by an automatic download that can’t be opted out of, such as an “update” from the company. Apple can have iPhones come with pre-programmed software that can’t be accessed through any usual menu system on the iPhone. There can even be a hardware issue that decays or changes based on the average amount of use. There can be a combination of these methods. The thing is, so many people jailbreak iPhones, it seems like someone might be able to catch malicious software. There are some protocols that force updates, though. hmmm.

Fact 3: They’ve been accused of doing this every new release since iPhone 4 came out. his really doesn’t look like an accident, guys. This 2013 article in the New York Times Magazine by Catherine Rampell describes her personal anecdote, which, incidentally is exactly the same as the way my iPhone failed me. When Catherine contacted Apple tech support they informed her the iOS 7 platform didn’t work as well on the older phones, which lead her to wonder why the phones automatically updated the operating system upgrade in the first place.

Earlier on the timeline, Apple released iOS 4 offering features that were new and hot in 2010: features like tap-to-focus camera, multitasking and faster image loading. The iPhone 4 was the most popular phone in the country at the time but it suddenly didn’t work right, crashing and becoming too slow to be useful.

The iPhone 4 release made the iPhone 4 so horrible it was basically garbage, and Apple appeared to have realized the potential lost loyalty and toned it down. The pattern of buggy and slow products remained, though, When iOS 7 came out in 2013, it was a common complaint online and people started to feel very sure Apple was doing it on purpose.

Fact 4: Google Trends shows telltale spikes in complaints that match up perfectly with the release dates. The New York Times(2014) called this one and published Google queries for “iphone slow” spike in traffic for that topic. Look at Google trends forecasting further spikes because the pattern is just that obvious:

Does Apple Ruin Your iPhone on Purpose? The Conspiracy, Explained

Apple has a very loyal customer base, though. Rene Ritchie wrote for iMore, saying this planned obsolescence argument is “sensational,” and a campaign of “misinformation” by people who don’t actually understand how great an iPhone really is(barf). Even though the motive is crystal clear, the arguement that Apple is innocent isn’t complete nonsense, either: Apple ruining iPhones could damage customer loyalty. People espousing this argument claim an intentional slowdown is less likely than just regular incompatibility due to new software features. The latter point is a good one, considering how almost all software manufacturers have a hard time adjusting new software to old operating systems. Cooler software usually needs faster hardware and for some ridiculous reason no one has ever come out with an appropriately customizable smartphone and Apple woudl likely be the last on the list.

Christopher Mims pointed out on Quartz: “There is no smoking gun here, no incriminating memo,” of an intentional slowdown on Apple’s part.

There is really no reason to believe Apple would be against this kind of thing, even if planned obsolescence were a happy accident for the mega-corporation. Basically, if this is happening by accident it’s even better for Apple because they don’t have to take responsibility and it likely helps push the new line. Apple is far from deserving the trustworthy reputation they’ve cultivated under Steve Jobs, as the glitzy marketing plan behind the pointless new Apple Watch demonstrates.

Jonathan Howard
Jonathan is a freelance writer living in Brooklyn, NY