Tag Archives: meteor

How the Moon Was Formed


The moon is the result of a primordial collision between a Mars-sized planetary body and our planet, but little else beyond this is certain about the silvery world we can see whenever we look at the sky. Despite 61 space missions, six of which were landings, where astronauts collected moon rock samples, there are a whole host of questions. Particularly – exactly how much of the moon, a natural satellite is actually made up from Earth, and how much from this strange, lost world – and what was it like?

Researchers working in France and Israel might have enough evidence to answer one of those questions, finding more about the smaller planetary body that hit us. Apparently, it’s not all that different from home – with a composition that was likely similar to Earth. The latest models proposed suggest that the moon’s current composition is explained best if whatever happened to strike the Earth also formed nearby, in the early days of our solar system – a time of extreme chaos. It is believed that Jupiter alone caused a number of violent collisions between the other worlds in our solar system, before being dragged to its current orbit by Saturn. Two subsequent studies have proposed that both of these worlds continued to accumulate new material as they were continually bombarded with smaller protoplanets. Unlike the moon, however, Earth managed to gather more of this cosmic dust.

The most supported explanation is the “giant impact hypothesis,” which states that the moon first came into being about 4.5 billion years ago, the remains of an accident in which our planet was struck by an object approximately the size of a planet, roughly one tenth the mass of Earth. Attempted recreations of what happened and recent studies of the moon rock samples have suggested that our moon should consist primarily of remains from this mysterious impactor, which planetary scientists call Theia. If this is the case, it would explain why so many of the moon rocks resemble the minerals composing the Earth’s mantle.

The main problem faced by the researchers is that so often, planets bear very distinct compositions from each other. Mars, Mercury and the big asteroids like Vesta, for all that they have in common, also have slightly differing ratios of their respective elements. If this world known as Theia first developed in a remote part of the solar system, then its makeup would be significantly different from that on Earth, and therefore the bulk of the moon should not be so similar to the Earth’s mantle. It had to have struck Earth with a glancing blow, anything stronger could have destroyed it well before the first life forms began appearing on its surface.

In their effort to solve the problem, Alessandra Mastrobuono-Battisti and Hagai Perets at the Israel Institute of Technology both pored over data from a series of simulations – covering the scenarios of 40 different artificial solar systems. The effort applied more computer power than had been utilized by any previous study. The model simulated the growth of the planetary bodies we’re familiar with and then set them off in a game of cosmic billiards, consistently striking each other with their orbits.

When they developed this new simulation, they considered that any planets found farther away from our sun typically contain a greater relative abundance of oxygen isotopes, consistent with chemical mixes observed within the Earth, as well as the moon and Mars. Therefore any such planetesimals that were to form near our planet would contain similar chemical traces. “If they are living in the same neighborhood, they will be made of roughly the same material,” said Perets.

The team described their work in the journal Nature: the majority of these interplanetary collisions were about 20 to 40 percent—big, occurring among bodies that had formed from similar distances near the sun, which was responsible for their similarities in makeup. It’s far less likely that Theia would have sailed a long distance before impacting the planet, and the study lends credence to this idea.

Not all is readily explained in their work. There’s still a wealth of the element tungsten, which needs to be explained. This element, categorized as a siderophile – iron-loving, is expected to sink towards planetary cores as time progresses, something that would affect its variability on planets throughout the solar system, even if they did in fact form at the same time, as Earth and Mars are believed to. Bodies develop their That’s because bodies of cores with different rates, based on a number of variables including size. Although a little mixing as a result of the impact is inevitable, much of Theia’s tungsten-rich mantle material would be flung into orbit from the explosion and eventually incorporated into the moon, making the amounts of tungsten on Earth and the moon considerably different.

In the two independent studies which appeared separately in the journal Nature, Thomas Kruijer at the University of Münster in Germany and Mathieu Touboul at the University of Lyon in France compared the ratio from two tungsten isotopes— both tungsten-184 and tungsten-182 – found in both moon rocks as well as within the Earth’s mantle. According to the teams, these moon rocks contain slightly more tungsten-182 than has been found on Earth.

This is quite an exciting find, especially since this particular isotope of tungsten is actually the result of radioactive decay from an isotope derived of the element hafnium. Its half-life is rather short, approximately nine million years. Because the iron-loving tungsten has a tendency for sinking towards a planet’s core, the hafnium isotope remains closer to the surface, where over an extended period of time, it transforms into tungsten-182. That means there’s an excess of tungsten-182 within a planet’s mantle contrasted with tungsten-184 and other naturally occurring isotopes.

The difference of this isotope on both the Earth and the moon is comparatively small: the two studies rate this level at somewhere between 20 to 27 parts per million. Even a shift this minimal would mean a great deal of chemical fine-tuning, said Kruijer, meaning that chance occurrences are a bit unlikely. “Varying the tungsten by only a percent or so has a dramatic effect,” he says. “The only solution is if the mantle of proto-Earth had similar tungsten-182 content to Theia, and the core of the impactor directly merged with Earth’s.”

That’s not so likely, however. Although most of Theia’s core, considerably heavier than the mantle, shall remain a part of planet Earth, the mantle itself will continue to mix with that of the Earth as it continues to be flung through orbit. As the moon gradually accretes, more chemical mixing will take place. Although the ratio of Theia’s core and its mantle material that actually transforms into parts of the moon is left up to random chance, there must have been at least a small degree of core material, according to Kruijer. Touboul’s team arrived at a similar conclusion: Were these differences in the tungsten actually the result of a random mixture when Theia’s shards sloshed across the Earth, our moon would be a great deal different than it presently is.

Therefore, the simplest and most plausible solution, according to the authors of the study, is known as the “late veneer” hypothesis, positing that the Earth along with the proto-moon began with tungsten isotope ratios that were similar to each other. Since Earth was a much larger and more massive body, it would continuously draw in more planetesimals following the impact, giving the mantle new material to build a crust. The veneer from those planetary fragments would then have significantly more tungsten-184 compared to tungsten-182, and the moon would then contain the same ratio due to the impact.

“This looks like solid data,” Fréderic Moynier, a cosmochemist and astrophysicist at the Institut de Physique du Globe de Paris, said in an email. “It fits with the present theory of late veneer, which is simply based on the elemental abundance of the siderophile elements (such as tungsten): there are simply too many siderophile elements in the present Earth’s mantle (they should all be in the core) and therefore they must have been brought to Earth after core formation via meteorite impacts.”

There is one remaining mystery to be solved. For the moon to remain identical to the Earth’s tungsten ratio, Theia and Earth would have had to begin with similar degrees of tungsten in their composition. Where did it all go? While there are a number of questions to arise from the study, ones that future studies hope to answer in the near future, it seems like a bit more light is waxing over the story of the moon’s origins.

James Sullivan
James Sullivan is the assistant editor of Brain World Magazine and a contributor to Truth Is Cool and OMNI Reboot. He can usually be found on TVTropes or RationalWiki when not exploiting life and science stories for another blog article.

Cloudy With a Chance of Iron Rain? How Prehistoric Earth May Have Gotten Its Metal


It’s a well known fact that our solar system, and particularly our planet, has endured a number of disasters from its very beginning as a chunk of rock some 4.6 billion years ago. An early collision with Mars, aptly named for the god of war, may be among the events responsible for first bringing life to Earth. Another collision is responsible for the chunk of earth that broke off to form our moon. Relentless meteors have pummeled its surface ever since, some quite harmless, while others brought about massive extinction events. Earth in its very beginning was hardly a hospitable place to be.

Among the many objects to hit the Earth within its first billion years, many of the meteors were rich in iron. These collisions could have led to it becoming so prevalent across the planet as well as one of the essential minerals needed to support many different forms of life. Iron in these early days would have infiltrated the atmosphere onto Earth’s crust, but also would have melted its mantle at high rates as well. These same meteorites may have also left behind metals such as gold or platinum which easily bond with iron. What the model has not convincingly explained yet, is how the iron is so prevalent that it makes up so much of the mantle of our planet.

Researcher Richard Kraus of the Lawrence Livermore National Laboratory of California, wanted to take the research a step further, in order to find the best way that would measure exactly how iron would behave under such harsh conditions as our planet’s first days, and what would sort of extreme heat would be necessary for iron to vaporize completely.

“We’re never really going to be able to get a situation where we can simulate the actual planetary impact, with objects a thousand kilometres across. It would just be too destructive,” says Kraus. “We’re taking a step back and saying, let’s make a fundamental measure of the entropy of iron.”

In order to investigate further, the team employed the Z machine from the Sandia National Laboratory of Albuquerque, New Mexico, a machine used to accelerate metals to the most extreme speeds with the help of high magnetic fields.

For their project, they shot small iron samples with aluminium plates, each less than a centimeter square and about 1.2 millimeters thick. These plates were accelerated between 30,000 to 40,000 miles per hour. The result was a powerful collision in which shock waves rattled through the iron, causing the pieces to compress and then heat up before they eventually vaporized. The researchers were then able to determine how the properties they found in this lab-made iron rain worked by having them drop upon a window composed of quartz, solid enough to withstand the dropping particles.

Through their experimentation, they soon discovered that it required considerably less pressure for them to vaporize the iron than researchers had once thought – in fact, a full 40 per cent below their original estimation. This realization is painting an entirely new vision of what the early Earth must have looked like. The meteors entering our orbit would typically vaporize upon their impact due to the extreme temperatures and pressure as they accelerated at speeds perhaps faster than those tested under lab conditions. These vanquished meteors would then send a boiling hot plume composed primarily of iron and rock dust into the air. This mixture would afterwards rain down, allowing it to easily and thoroughly blend into the Earth’s mantle.

The way in which iron behaves under pressure also suffices to explain why our moon has significantly less metal across its surface compared to Earth. Many suspect that since it broke off from the Earth, the two bodies should have a similar if not identical composition. Any iron that vaporized from meteor collisions on the moon would instead be able to escape back in space, considering that the moon has relatively low levels of gravity.

The beginning of our planet, may have been little more than chemistry – reactions of not only celestial bodies that smashed into each other, but of what they left behind.

“The reason we’re able to mine gold and make jewellery out of it, and mine palladium and make catalytic converters, is because the silicates have much higher abundances of these elements than one might expect,” said Richard Walker from the University of Maryland. “This is a pretty good way of explaining how they got here and why they’re not located 2900 kilometres below your feet in the core.”

Kraus’ work was published this week in the journal Nature Geoscience.

James Sullivan
James Sullivan is the assistant editor of Brain World Magazine and a contributor to Truth Is Cool and OMNI Reboot. He can usually be found on TVTropes or RationalWiki when not exploiting life and science stories for another blog article.