Category Archives: Nanotechnology

Turning diamonds’ defects into long-term 3-D data storage


With the amount of data storage required for our daily lives growing and growing, and currently available technology being almost saturated, we’re in desperate need of a new method of data storage. The standard magnetic hard disk drive (HDD) – like what’s probably in your laptop computer – has reached its limit, holding a maximum of a few terabytes. Standard optical disk technologies, like compact disc (CD), digital video disc (DVD) and Blu-ray disc, are restricted by their two-dimensional nature – they just store data in one plane – and also by a physical law called the diffraction limit, based on the wavelength of light, that constrains our ability to focus light to a very small volume.

And then there’s the lifetime of the memory itself to consider. HDDs, as we’ve all experienced in our personal lives, may last only a few years before things start to behave strangely or just fail outright. DVDs and similar media are advertised as having a storage lifetime of hundreds of years. In practice this may be cut down to a few decades, assuming the disk is not rewritable. Rewritable disks degrade on each rewrite.

Without better solutions, we face financial and technological catastrophes as our current storage media reach their limits. How can we store large amounts of data in a way that’s secure for a long time and can be reused or recycled?

In our lab, we’re experimenting with a perhaps unexpected memory material you may even be wearing on your ring finger right now: diamond. On the atomic level, these crystals are extremely orderly – but sometimes defects arise. We’re exploiting these defects as a possible way to store information in three dimensions.

Focusing on tiny defects

One approach to improving data storage has been to continue in the direction of optical memory, but extend it to multiple dimensions. Instead of writing the data to a surface, write it to a volume; make your bits three-dimensional. The data are still limited by the physical inability to focus light to a very small space, but you now have access to an additional dimension in which to store the data. Some methods also polarize the light, giving you even more dimensions for data storage. However, most of these methods are not rewritable.

Here’s where the diamonds come in.

The orderly structure of a diamond, but with a vacancy and a nitrogen replacing two of the carbon atoms.
Zas2000

A diamond is supposed to be a pure well-ordered array of carbon atoms. Under an electron microscope it usually looks like a neatly arranged three-dimensional lattice. But occasionally there is a break in the order and a carbon atom is missing. This is what is known as a vacancy. Even further tainting the diamond, sometimes a nitrogen atom will take the place of a carbon atom. When a vacancy and a nitrogen atom are next to each other, the composite defect is called a nitrogen vacancy, or NV, center. These types of defects are always present to some degree, even in natural diamonds. In large concentrations, NV centers can impart a characteristic red color to the diamond that contains them.

This defect is having a huge impact in physics and chemistry right now. Researchers have used it to detect the unique nuclear magnetic resonance signatures of single proteins and are probing it in a variety of cutting-edge quantum mechanical experiments.

Nitrogen vacancy centers have a tendency to trap electrons, but the electron can also be forced out of the defect by a laser pulse. For many researchers, the defects are interesting only when they’re holding on to electrons. So for them, the fact that the defects can release the electrons, too, is a problem.

But in our lab, we instead look at these nitrogen vacancy centers as a potential benefit. We think of each one as a nanoscopic “bit.” If the defect has an extra electron, the bit is a one. If it doesn’t have an extra electron, the bit is a zero. This electron yes/no, on/off, one/zero property opens the door for turning the NV center’s charge state into the basis for using diamonds as a long-term storage medium.

Starting from a blank ensemble of NV centers in a diamond (1), information can be written (2), erased (3), and rewritten (4).
Siddharth Dhomkar and Carlos A. Meriles, CC BY-ND

Turning the defect into a benefit

Previous experiments with this defect have demonstrated some properties that make diamond a good candidate for a memory platform.

First, researchers can selectively change the charge state of an individual defect so it either holds an electron or not. We’ve used a green laser pulse to assist in trapping an electron and a high-power red laser pulse to eject an electron from the defect. A low-power red laser pulse can help check if an electron is trapped or not. If left completely in the dark, the defects maintain their charged/discharged status virtually forever.

The NV centers can encode data on various levels.
Siddharth Dhomkar and Carlos A. Meriles, CC BY-ND

Our method is still diffraction limited, but is 3-D in the sense that we can charge and discharge the defects at any point inside of the diamond. We also present a sort of fourth dimension. Since the defects are so small and our laser is diffraction limited, we are technically charging and discharging many defects in a single pulse. By varying the duration of the laser pulse in a single region we can control the number of charged NV centers and consequently encode multiple bits of information.

Though one could use natural diamonds for these applications, we use artificially lab-grown diamonds. That way we can efficiently control the concentration of nitrogen vacancy centers in the diamond.

All these improvements add up to about 100 times enhancement in terms of bit density relative to the current DVD technology. That means we can encode all the information from a DVD into a diamond that takes up about one percent of the space.

Past just charge, to spin as well

If we could get beyond the diffraction limit of light, we could improve storage capacities even further. We have one novel proposal on this front.

A human cell, imaged on the right with super-resolution microscope.
Dr. Muthugapatti Kandasamy, CC BY-NC-ND

Nitrogen vacancy centers have also been used in the execution of what is called super-resolution microscopy to image things that are much smaller than the wavelength of light. However, since the super-resolution technique works on the same principles of charging and discharging the defect, it will cause unintentional alteration in the pattern that one wants to encode. Therefore, we won’t be able to use it as it is for memory storage application and we’d need to back up the already written data somehow during a read or write step.

Here we propose the idea of what we call charge-to-spin conversion; we temporarily encode the charge state of the defect in the spin state of the defect’s host nitrogen nucleus. Spin is a fundamental property of any elementary particle; it’s similar to its charge, and can be imagined as having a very tiny magnet permanently attached it.

While the charges are being adjusted to read/write the information as desired, the previously written information is well protected in the nitrogen spin state. Once the charges have encoded, the information can be back converted from the nitrogen spin to the charge state through another mechanism which we call spin-to-charge conversion.

With these advanced protocols, the storage capacity of a diamond would surpass what existing technologies can achieve. This is just a beginning, but these initial results provide us a potential way of storing huge amount of data in a brand new way. We’re looking forward to transform this beautiful quirk of physics into a vastly useful technology.

The Conversation

Siddharth Dhomkar, Postdoctoral Associate in Physics, City College of New York and Jacob Henshaw, Teaching Assistant in Physics, City College of New York

Biohybrid robots built from living tissue start to take shape


Think of a traditional robot and you probably imagine something made from metal and plastic. Such “nuts-and-bolts” robots are made of hard materials. As robots take on more roles beyond the lab, such rigid systems can present safety risks to the people they interact with. For example, if an industrial robot swings into a person, there is the risk of bruises or bone damage.

Researchers are increasingly looking for solutions to make robots softer or more compliant – less like rigid machines, more like animals. With traditional actuators – such as motors – this can mean using air muscles or adding springs in parallel with motors. For example, on a Whegs robot, having a spring between a motor and the wheel leg (Wheg) means that if the robot runs into something (like a person), the spring absorbs some of the energy so the person isn’t hurt. The bumper on a Roomba vacuuming robot is another example; it’s spring-loaded so the Roomba doesn’t damage the things it bumps into.

But there’s a growing area of research that’s taking a different approach. By combining robotics with tissue engineering, we’re starting to build robots powered by living muscle tissue or cells. These devices can be stimulated electrically or with light to make the cells contract to bend their skeletons, causing the robot to swim or crawl. The resulting biobots can move around and are soft like animals. They’re safer around people and typically less harmful to the environment they work in than a traditional robot might be. And since, like animals, they need nutrients to power their muscles, not batteries, biohybrid robots tend to be lighter too.

Tissue-engineered biobots on titanium molds.
Karaghen Hudson and Sung-Jin Park, CC BY-ND

Building a biobot

Researchers fabricate biobots by growing living cells, usually from heart or skeletal muscle of rats or chickens, on scaffolds that are nontoxic to the cells. If the substrate is a polymer, the device created is a biohybrid robot – a hybrid between natural and human-made materials.

If you just place cells on a molded skeleton without any guidance, they wind up in random orientations. That means when researchers apply electricity to make them move, the cells’ contraction forces will be applied in all directions, making the device inefficient at best.

So to better harness the cells’ power, researchers turn to micropatterning. We stamp or print microscale lines on the skeleton made of substances that the cells prefer to attach to. These lines guide the cells so that as they grow, they align along the printed pattern. With the cells all lined up, researchers can direct how their contraction force is applied to the substrate. So rather than just a mess of firing cells, they can all work in unison to move a leg or fin of the device.

Tissue-engineered soft robotic ray that’s controlled with light.
Karaghen Hudson and Michael Rosnach, CC BY-ND

Biohybrid robots inspired by animals

Beyond a wide array of biohybrid robots, researchers have even created some completely organic robots using natural materials, like the collagen in skin, rather than polymers for the body of the device. Some can crawl or swim when stimulated by an electric field. Some take inspiration from medical tissue engineering techniques and use long rectangular arms (or cantilevers) to pull themselves forward.

Others have taken their cues from nature, creating biologically inspired biohybrids. For example, a group led by researchers at California Institute of Technology developed a biohybrid robot inspired by jellyfish. This device, which they call a medusoid, has arms arranged in a circle. Each arm is micropatterned with protein lines so that cells grow in patterns similar to the muscles in a living jellyfish. When the cells contract, the arms bend inwards, propelling the biohybrid robot forward in nutrient-rich liquid.

More recently, researchers have demonstrated how to steer their biohybrid creations. A group at Harvard used genetically modified heart cells to make a biologically inspired manta ray-shaped robot swim. The heart cells were altered to contract in response to specific frequencies of light – one side of the ray had cells that would respond to one frequency, the other side’s cells responded to another.

When the researchers shone light on the front of the robot, the cells there contracted and sent electrical signals to the cells further along the manta ray’s body. The contraction would propagate down the robot’s body, moving the device forward. The researchers could make the robot turn to the right or left by varying the frequency of the light they used. If they shone more light of the frequency the cells on one side would respond to, the contractions on that side of the manta ray would be stronger, allowing the researchers to steer the robot’s movement.

Toughening up the biobots

While exciting developments have been made in the field of biohybrid robotics, there’s still significant work to be done to get the devices out of the lab. Devices currently have limited lifespans and low force outputs, limiting their speed and ability to complete tasks. Robots made from mammalian or avian cells are very picky about their environmental conditions. For example, the ambient temperature must be near biological body temperature and the cells require regular feeding with nutrient-rich liquid. One possible remedy is to package the devices so that the muscle is protected from the external environment and constantly bathed in nutrients.

The sea slug Aplysia californica.
Jeff Gill, CC BY-ND

Another option is to use more robust cells as actuators. Here at Case Western Reserve University, we’ve recently begun to investigate this possibility by turning to the hardy marine sea slug Aplysia californica. Since A. californica lives in the intertidal region, it can experience big changes in temperature and environmental salinity over the course of a day. When the tide goes out, the sea slugs can get trapped in tide pools. As the sun beats down, water can evaporate and the temperature will rise. Conversely in the event of rain, the saltiness of the surrounding water can decrease. When the tide eventually comes in, the sea slugs are freed from the tidal pools. Sea slugs have evolved very hardy cells to endure this changeable habitat.

Sea turtle-inspired biohybrid robot, powered by muscle from the sea slug.
Dr. Andrew Horchler, CC BY-ND

We’ve been able to use Aplysia tissue to actuate a biohybrid robot, suggesting that we can manufacture tougher biobots using these resilient tissues. The devices are large enough to carry a small payload – approximately 1.5 inches long and one inch wide.

A further challenge in developing biobots is that currently the devices lack any sort of on-board control system. Instead, engineers control them via external electrical fields or light. In order to develop completely autonomous biohybrid devices, we’ll need controllers that interface directly with the muscle and provide sensory inputs to the biohybrid robot itself. One possibility is to use neurons or clusters of neurons called ganglia as organic controllers.

That’s another reason we’re excited about using Aplysia in our lab. This sea slug has been a model system for neurobiology research for decades. A great deal is already known about the relationships between its neural system and its muscles – opening the possibility that we could use its neurons as organic controllers that could tell the robot which way to move and help it perform tasks, such as finding toxins or following a light.

While the field is still in its infancy, researchers envision many intriguing applications for biohybrid robots. For example, our tiny devices using slug tissue could be released as swarms into water supplies or the ocean to seek out toxins or leaking pipes. Due to the biocompatibility of the devices, if they break down or are eaten by wildlife these environmental sensors theoretically wouldn’t pose the same threat to the environment traditional nuts-and-bolts robots would.

One day, devices could be fabricated from human cells and used for medical applications. Biobots could provide targeted drug delivery, clean up clots or serve as compliant actuatable stents. By using organic substrates rather than polymers, such stents could be used to strengthen weak blood vessels to prevent aneurysms – and over time the device would be remodeled and integrated into the body. Beyond the small-scale biohybrid robots currently being developed, ongoing research in tissue engineering, such as attempts to grow vascular systems, may open the possibility of growing large-scale robots actuated by muscle.

The Conversation

Victoria Webster, Ph.D. Candidate in Mechanical and Aerospace Engineering, Case Western Reserve University

This article was originally published on The Conversation. Read the original article.

How nanotechnology can help us grow more food using less energy and water


With the world’s population expected to exceed nine billion by 2050, scientists are working to develop new ways to meet rising global demand for food, energy and water without increasing the strain on natural resources. Organizations including the World Bank and the U.N. Food and Agriculture Organization are calling for more innovation to address the links between these sectors, often referred to as the food-energy-water (FEW) nexus.

Nanotechnology – designing ultrasmall particles – is now emerging as a promising way to promote plant growth and development. This idea is part of the evolving science of precision agriculture, in which farmers use technology to target their use of water, fertilizer and other inputs. Precision farming makes agriculture more sustainable because it reduces waste.

We recently published results from research in which we used nanoparticles, synthesized in our laboratory, in place of conventional fertilizer to increase plant growth. In our study we successfully used zinc nanoparticles to increase the growth and yield of mung beans, which contain high amounts of protein and fiber and are widely grown for food in Asia. We believe this approach can reduce use of conventional fertilizer. Doing so will conserve natural mineral reserves and energy (making fertilizer is very energy-intensive) and reduce water contamination. It also can enhance plants’ nutritional values.

Applying fertilizer the conventional way can waste resources and contribute to water pollution.
Fotokostic/Shutterstock.com

Impacts of fertilizer use

Fertilizer provides nutrients that plants need in order to grow. Farmers typically apply it through soil, either by spreading it on fields or mixing it with irrigation water. A major portion of fertilizer applied this way gets lost in the environment and pollutes other ecosystems. For example, excess nitrogen and phosphorus fertilizers become “fixed” in soil: they form chemical bonds with other elements and become unavailable for plants to take up through their roots. Eventually rain washes the nitrogen and phosphorus into rivers, lakes and bays, where it can cause serious pollution problems.

Fertilizer use worldwide is increasing along with global population growth. Currently farmers are using nearly 85 percent of the world’s total mined phosphorus as fertilizer, although plants can uptake only an estimated 42 percent of the phosphorus that is applied to soil. If these practices continue, the world’s supply of phosphorus could run out within the next 80 years, worsening nutrient pollution problems in the process.

Phosphate mine near Flaming Gorge, Utah.
Jason Parker-Burlingham/Wikipedia, CC BY

In contrast to conventional fertilizer use, which involves many tons of inputs, nanotechnology focuses on small quantities. Nanoscale particles measure between 1 and 100 nanometers in at least one dimension. A nanometer is equivalent to one billionth of a meter; for perspective, a sheet of paper is about 100,000 nanometers thick.

These particles have unique physical, chemical and structural features, which we can fine-tune through engineering. Many biological processes, such as the workings of cells, take place at the nano scale, and nanoparticles can influence these activities.

Scientists are actively researching a range of metal and metal oxide nanoparticles, also known as nanofertilizer, for use in plant science and agriculture. These materials can be applied to plants through soil irrigation and/or sprayed onto their leaves. Studies suggest that applying nanoparticles to plant leaves is especially beneficial for the environment because they do not come in contact with soil. Since the particles are extremely small, plants absorb them more efficiently than via soil. We synthesized the nanoparticles in our lab and sprayed them through a customized nozzle that delivered a precise and consistent concentration to the plants.

We chose to target zinc, which is a micronutrient that plants need to grow, but in far smaller quantities than phosphorus. By applying nano zinc to mung bean leaves after 14 days of seed germination, we were able to increase the activity of three important enzymes within the plants: acid phosphatase, alkaline phosphatase and phytase. These enzymes react with complex phosphorus compounds in soil, converting them into forms that plants can take up easily.

Algae bloom in Lake Erie in 2011, caused by phosphorus in runoff from surrounding farms.
NASA Earth Observatory/Flickr, CC BY

When we made these enzymes more active, the plants took up nearly 11 percent more phosphorus that was naturally present in the soil, without receiving any conventional phosphorous fertilization. The plants that we treated with zinc nanoparticles increased their biomass (growth) by 27 percent and produced 6 percent more beans than plants that we grew using typical farm practices but no fertilizer.

Nanofertilizer also has the potential to increase plants’ nutritional value. In a separate study, we found that applying titanium dioxide and zinc oxide nanoparticles to tomato plants increased the amount of lycopene in the tomatoes by 80 to 113 percent, depending on the type of nanoparticles and concentration of dosages. This may happen because the nanoparticles increase plants’ photosynthesis rates and enable them to take up more nutrients.

Lycopene is a naturally occurring red pigment that acts as an antioxidant and may prevent cell damage in humans who consume it. Making plants more nutrition-rich in this way could help to reduce malnutrition. The quantities of zinc that we applied were within the U.S. government’s recommended limits for zinc in foods.

Next questions: health and environmental impacts of nanoparticles

Nanotechnology research in agriculture is still at an early stage and evolving quickly. Before nanofertilizers can be used on farms, we will need a better understanding of how they work and regulations to ensure they will be used safely. The U.S. Food and Drug Administration has already issued guidance for the use of nanomaterials in animal feed.

Manufacturers also are adding engineered nanoparticles to foods, personal care and other consumer products. Examples include silica nanoparticles in baby formula, titanium dioxide nanoparticles in powdered cake donuts, and other nanomaterials in paints, plastics, paper fibers, pharmaceuticals and toothpaste.

Many properties influence whether nanoparticles pose risks to human health, including their size, shape, crystal phase, solubility, type of material, and the exposure and dosage concentration. Experts say that nanoparticles in food products on the market today are probably safe to eat, but this is an active research area.

Addressing these questions will require further studies to understand how nanoparticles behave within the human body. We also need to carry out life cycle assessments of nanoparticles’ impact on human health and the environment, and develop ways to assess and manage any risks they may pose, as well as sustainable ways to manufacture them. However, as our research on nanofertilizer suggests, these materials could help solve some of the word’s most pressing resource problems at the food-energy-water nexus.

The Conversation

Ramesh Raliya, Research Scientist, Washington University in St Louis and Pratim Biswas, Chairman, Department of Energy, Environmental and Chemical Engineering, Washington University in St Louis

This article was originally published on The Conversation. Read the original article.