Category Archives: Food Tech

12 Amazing New Technologies To Check Out This Year

It seems that every year there are new technologies coming out that are even more amazing than what the previous year held. From self-driving cars to robots entering daily lives, the world is changing at an incredibly fast rate. Click the ‘Next’ button below to see 12 new technologies on the scene in 2016!

Fast navigate:

  1. This 3D-Printing Pothole Repairing Robot
  2. This Hoverboard Actually Hovers
  3. Self-Driving Cars Are Coming To A Highway Near You
  4. Turning Segways Into Robots
  5. This Passenger Drone Takes You For A Ride
  6. This Shirt Is A Biometric Wearable Computer
  7. This Spoon Tells You When To Stop Eating
  8. This Refrigerator Can Also Help You With Your Diet
  9. Into Mountain Biking? Then This May Be A Godsend
  10. This Basketball Trains You To Be A Better Player
  11. Snoring Just Got A Whole Lot Quieter
  12. These Contact Lenses Eliminate The Need For Bifocals
1 of 13

This Spoon Tells You When To Stop Eating

Hailed at CES 2016 as the “diet spoon”, this is one invention sure to help Americans lose their fast-food weight a lot quicker than guessing how much they ate today. By taking a picture, it identifies the food on your plate before you start eating. This information can then be compared to a database of pictures to figure out an estimate of how many calories you are eating. It also uses gesture recognition to tell you how many bites you’ve taken. It comes with interchangeable utensil head attachments, as well, such as forks and spoons. Once you have one of these, you officially have no excuse for overeating!

8 of 13

Can gene editing provide a solution to global hunger?

According to the World Food Program, some 795 million people – one in nine people on earth – don’t have enough food to lead a healthy active life. That will only get worse with the next global food crisis, predicted to occur within four years by experts at the recent Third International Conference on Global Warming and Food Security.

Unprecedented population growth, increasing conflict and displacement, natural calamities and emergence of major epidemics are some of the factors that will compound complexities of global food security over the coming years. And recent natural disasters in food-exporting Asian and African countries, as well as regions like California, may hasten a crisis.

In the face of these facts, any technique that can improve food production would be a welcome development. To counteract the coming problem, it is imperative to try novel and daring solutions across the agricultural food chain, including the gene modification of crops. While genetically modified (GM) crops could be our best hope for feeding an increasingly hungry planet, they need to be developed within a regulatory framework that takes potential risks into account and protects farmers, consumers and the environment.

Yam tubers are a staple in West Africa.
International Institute of Tropical Agriculture, CC BY-NC

GM crops in the developing world

Gene modification can produce nutrient-rich, highly productive, drought- and pest-resistant crop varieties much needed by small-scale farmers globally. For example, scientists at biotech company Cellectis have extended the shelf life of potatoes by disabling a single gene that promotes accumulation of sweet sugars within the tuber. Using this technique, they also reduced its production of cancer-promoting agents including acrylamide, which is often produced when a potato is fried.

One can imagine these kinds of improvements being of particular interest to farmers in Africa and the rest of the developing world, who rely on staple crops including corn, rice, potatoes and soy. Along with genetically modified cotton, GM corn and soy are currently grown in the African countries of Burkina Faso, Egypt and South Africa.

In most African countries, however, GM crops remain a farfetched idea. Despite important economic progress and agricultural successes, according to the Food and Agriculture Organization, Africa remains the world’s most food-insecure continent. One-third of our continent’s population is chronically undernourished. Chronic malnutrition, or “hidden hunger,” though often invisible, is devastating and deadly. Over half of children’s deaths globally can be averted if children have access to nutritious foods.

TALEN is one gene-editing technique that can modify the genome of a crop plant.

How does gene editing work?

Conventionally, the production of genetically modified organisms involves inserting desired foreign genes into the genome of a plant or animal. But a different technique known as gene editing modifies plant, as well as animal and human, genomes without the introduction of foreign genetic materials.

Gene editing uses biological catalysts called transcription activator-like effector nucleases (TALENs) that can be engineered to bind to any DNA sequence. Scientists can introduce these enzymes into living cells where they cut out unwanted pieces of DNA, in effect editing the genome. This technique, known as TALEN-mediated genome engineering, is also referred to as Genome Editing with Engineered Nucleases.

Genome editing is not a new idea. It has been used to create gene edits in human stem cells as well as in worms, fish, mice and cattle with varying degrees of success. In the laboratory, TALENs have also been used to successfully correct the genetic error underlying diseases such as sickle cell anemia.

In crop science, gene editing has been used to make Cellectis’s less sugary potato, as well as a soybean containing high levels of omega-3. The first commercial application of this technology in a plant for human consumption was approved this spring, when the US company Cibus announced an edited version of canola. The new canola plant is designed to grow well even when farmers apply particular herbicides that are used to control glyphosate-resistant weeds. Now there is talk of using this technique to manipulate photosynthesis to produce more food. Researchers at the International Rice Research Institute in the Philippines have engineered rice plants to extract energy from sunlight far more efficiently than they do now.

Risks along with the promise

Techniques for genetic engineering are not perfect. Significant genetic errors have been produced by the commonly applied techniques of genome editing, including TALENs, in the past. In laboratory models, off-target events that produce unwanted mutations, sometimes with fatal results, have been described in plants, fish and human cells.

For now, there remain many uncertainties about the impact of gene-edited organisms on the environment and health. While gene editing may not introduce foreign genetic material, the technology definitely changes the composition of the product at a very fundamental level. Research is currently under way to improve these techniques, reduce the frequency of unwanted mutations and improve the safety of genome editing.

Golden rice has beta-carotene biosynthesis genes added to its DNA.

While GMO crops cover 170 million hectares of land globally, representing 11% of all arable land, they remain controversial. Golden rice, for example, promises to save one million children a year from vitamin A-related mortality. Despite biotech company Sygenta offering the license to grow golden rice free of charge for humanitarian use, its approval has been stalled in most settings.

Of course, ideally we’d be able to increase food access in ways that don’t include risk, but there are few, if any, options at this level of potential positive impact that are risk-free.

Protesters in India rally after a farmer’s suicide.
REUTERS/Adnan Abidi

Regulatory protections

Because strict regulatory oversight is mostly lacking on GM techniques including genome editing, it’s conceivable that biotech companies may develop experimental gene-edited crops for testing in developing countries where the need for food is greater than the political will to protect the masses.

India’s experience with GMO crops makes the point. While still a multifarious issue, increased incidence of farmer suicide in India has been identified as an unforeseen consequence of the poorly regulated adoption of genetic engineering in that country. Activists contend indebtedness and crop failure were the main reasons for India’s farmer suicides – and both were inevitable outcomes of the corporate model of industrial agriculture introduced in India.

Interestingly, the move toward genome editing as the favored approach to genetic engineering may, at least in part, provide some leeway for biotech companies to avoid regulation. Genome editing using TALENs and similar techniques are either outside the jurisdiction of the US Department of Agriculture or were not envisioned when existing regulations were created.

The USDA currently relies on a product-based regulatory framework that focuses less on the technology used to develop the crop and more on the inherent risk of the final product. The emphasis is on any potential risk the new traits or attributes introduced into the plant pose to the public or the environment. But considering the reality of unanticipated, and often controversial, novel techniques of food production, it might be a better idea for the USDA to utilize process-based regulations as done by the EU, Argentina, Brazil, and several other countries. In those countries, the regulators focus on how food crops are developed, not just on the final outcome.

The world needs more nutrient-rich, environmentally friendly food production. More gene editing in food crops makes sense, but only with prudent regulatory mechanisms in place to ensure the safety of these new approaches to food availability. We don’t want to see more harm than good done as we seek to address the issue of global food security.

This piece was coauthored by Zimbabwean Dr Lindiwe Majele Sibanda, CEO of Food Agriculture Natural Resources Policy Analysis Network.

The Conversation

Utibe Effiong is Resident Physician at St Mary Mercy Hospital and Research Scientist for the Exposure Research Laboratory at University of Michigan.
Ramadhani Noor is Doctoral Student, Nutrition Epidemiology at Harvard University.

This article was originally published on The Conversation.
Read the original article.

Not all GMO plants are created equally

Many people have strong opinions about genetically modified plants, also known as genetically modified organisms or GMOs. But sometimes there’s confusion around what it means to be a GMO. It also may be much more sensible to judge a plant by its specific traits rather than the way it was produced – GMO or not.

This article is not about judging whether GMOs are good or bad, but rather an explanation of how plants with modified genomes are made. (There are non-plant GMOs, but in this article we will only refer to plant GMOs.) First of all, it’s necessary to define what we mean by a GMO. For the purposes of this discussion, I’m defining GMOs as plants whose genetic information (found in their genomes) has been modified by human activity.

Humans have changed the genomes of virtually all the plants in the grocery store

If we think of GMOs as plants that have genomes modified by humans, then quite a lot of the plants sold in any grocery store fit that description. But many of these modifications didn’t occur in the lab. Farmers select plants with superior, desirable traits to cultivate in a process known as agricultural evolution. Thousands of years of traditional agricultural breeding has changed plant genomes from those of their original wild ancestors.

Wild cabbage doesn’t look much like its domesticated version, broccoli.
Nicholas Turland, CC BY-NC-ND

Broccoli, for example, is not a naturally occurring plant. It’s been bred from undomesticated Brassica oleracea or ‘wild cabbage’; domesticated varieties of B. oleracea include both broccoli and cauliflower. Broccoli, along with any seedless variety of fruit (including what you think of as bananas), and most of the crops grown on farms today would not exist without human intervention.

However, these aren’t the plants that people typically think of when they think of GMOs. It’s easy to understand how farmers can breed better plants on farms (by choosing to plant seeds from the biggest or best-yielding plants, for example, imposing artificial selection on the crop species) so even though this activity changes plant genomes in ways nature wouldn’t have, most people don’t consider these plants GMOs.

Scientists training in marker-assisted backcrossing selection technique.

Creating “lab” GMOs

Once plant genes had been studied enough, researchers could turn to backcrossing. This technique involves breeding the offspring back with the parents to try to get a desired, stable combination of parental traits. Genes previously linked to desirable plant traits, such as higher yield or pest-resistance, could be identified and screened for using molecular biology techniques and linkage maps. These maps lay out the relative position of genes along a chromosome, based on how often they are passed along together to offspring. Closer genes tend to travel together.

Tiny experimental trees grown from lab-cultured cells in which researchers inserted new genes.
Scott Bauer

Researchers used molecular markers – specific, known gene sequences, present in the linkage maps – to select individual plants that contained both the new marker gene and the greatest proportion of other favorable genes from the parents. The combinations of genes passed to offspring are always due to random recombination of the parents’ genes. Researchers weren’t able to drive particular combinations themselves, they had to work with what arose naturally; so in this marker-assisted selection approach, there’s a lot of effort and time spent trying to find plants with the best combinations of genes.

In this system, a laboratory needs to screen the genomes, using molecular biology methods to look for particular gene sequences for desirable traits in the bred offspring. Sometimes a lab even breeds the plants in cases using tissue culture – a way to propagate many plants simultaneously while minimizing the resources needed to grow them.

Inserting non-plant genes into GMOs

In the early 1980s, the plant biotechnology era began with Agrobacterium tumifaciens. This bacterium naturally infects plants and, in the wild, creates tumors by transferring DNA between itself and the plant it has infected. Scientists use this natural property to transfer genes to plant cells from an A. tumifaciens bacterium modified to contain a gene of interest.

Agrobacterium tumefaciens as they begin to infect a carrot cell.
A G Matthysse, K V Holmes, R H G Gurlitz

For the first time, it was possible to insert specific genes into a plant genome, even genes that do not come from that species – or even from a plant. A. tumifaciens does not affect all plants, however, so researchers went on to develop DNA-transferring methods inspired by this system which would work without it. They include microinjection and “gene guns,” where the desired DNA was physically injected into the plant, or covered tiny particles that were literally shot into the nuclei of plant cells.

A recent review summarizes eight new methods for altering genes in plants. These are molecular biology techniques that use different enzymes or nucleic acid molecules (DNA and RNA) to make changes to a plant’s genes. One route is to alter the sequence of a plant’s DNA. Another is to leave the sequence alone but make other epigenetic modifications to the structure of a plant’s DNA. For instance, scientists could add arrangements of atoms called methyl groups to some of the nucleotide building blocks of DNA. These epigenetic modifications, while not altering the order of the DNA or of genes, change how genes can be expressed and thus the observable traits a plant has.

GMO doesn’t mean glyphosate-resistant

Calling a plant a genetically modified organism means only that – its genome has been modified by the activity of humans. But lots of people conflate the idea of a GMO plant with one that’s been created to be resistant to the herbicide glyphosate, also known by the brand name Roundup. It’s true that the most well-known GMO crops currently grown contain a gene that makes them resistant to glyphosate, which allows farmers to spray the chemical to kill weeds while allowing their crop to grow. But that’s just one example of a gene inserted into a plant.

It’s sensible to evaluate GMOs not on how they are made, but rather on what new traits the modified plants have. For instance, while it can be argued that glyphosate resistance in plants is not good for the environment because of increased use of the pesticide, other GMOs are unlikely to cause this problem.

Golden rice (on the right) compared to white rice.
International Rice Research Institute, CC BY

For example, it’s difficult see how the controversial golden rice, which has been engineered to produce vitamin A in the rice grains to be more nutritious, is worse for the environment than ordinary rice. GMOs have been developed to express a pesticide permitted in organic farming: Bt toxin, an insecticide naturally produced by the bacterium Bacillus thuringiensis. While this may reduce pesticide use, it may also lead to the evolution of Bt-resistant insects. And there are GMOs which have improved storage characteristics or nutritional content, like “Flavr Savr” tomatoes, or pineapples that contain lycopene, and tomatoes that contain anthocyanins. These compounds are ordinarily found in other fruits and are thought to have health benefits.

GMOs that include different species’ genes make some people uncomfortable.
elizaIO, CC BY-SA

The so-called “fish tomato” contains an antifreeze protein (gene name afa3), found naturally in winter flounder, that increases frost tolerance in the tomato plant. The tomato doesn’t actually contain fish tissue, or even necessarily DNA taken from fish tissue – just DNA of the same sequence present in the fish genome. The Afa3 protein is produced from the afa3 gene in the tomato cells using the same machinery as other tomato proteins.

Is there any fish in the tomato plant? Whether DNA taken from one organism and put into another can change the species of the recipient organism is an interesting philosophical debate. If a single gene from a fish can make a “fish tomato” a non-plant, are we human beings, who naturally contain over a hundred non-human genes, truly human?

The Conversation

This article was originally published on The Conversation.
Read the original article.

How Beans Might Save the Planet

One of the best secrets is hidden away deep in Colombia’s forests. You might be thinking it’s the beans for a new label of Juan Valdez coffee, but it’s a bit more interesting than that: The International Center for Tropical Agriculture (CIAT) based in Valle de Cauca and staffed by an international team of three hundred scientists focused on a growing concern: world hunger. The organization actually belongs to a food-research consortium called Cgiar, which has been contracted by the United Nations to safeguard staple crops – namely cassava, rice and beans, all of which provide basic nutrients in the vast majority of diets throughout the world.

So what do we find inside? CIAT contains a gene bank, where instead of money, shelves are crammed with a variety of beans – all different colors, shapes and sizes – like the laid out ingredients of a soup that contains over 36,000 different varieties, stored in an air conditioned vault. To Belgian scientist Daniel Debouck, who comes off as something like a modern day Gregor Mendel, it’s his life work.

Already, climate change has led to a number of crop failures throughout the world, and many more are expected to occur, as the next century may see an unprecedented increase in temperatures, over 3°C temperature rise over the next century (that’s a raise by about 5.4 degrees Fahrenheit.) Fortunately, Debouck’s gene bank already has the plant that can withstand these extreme temperatures. While it is little known, the CIAT foundation has had a number of successes going back to its establishment in 1967. The beans developed from CIAT’s earliest experiments have been successful in feeding up to 30 million people throughout Africa, whose extreme climates such as the sub-Saharan region, may see the greatest devastation. Central America has also been greatly devastated from climate change, partially due to the world economy and deforestation, and were the beans to be grown there – it could make a substantial improvement in the quality of life. Throughout the developing world, the UN estimates that over 400 million people rely on beans as a central part of their diets. In Rwanda alone, people consume 132 pounds of legumes every year, which are a primary source of their protein.

CIAT’s team of scientists were pushed to action after having read one of the latest reports by Intergovernmental Panel on Climate Change (IPCC) which project that temperatures will increase between 2°C to 5°C over the course of the next century. In response, CIAT created a digital model of vegetable plots in order to see how well they would grow with the spiked temperatures. The results were rather horrifying to witness. By the year 2050, the effects of climate change could reduce arable lands by as much as 50%.

Steve Beebe, who heads CIAT’s bean breeding program, was shocked into action by the results and so he began searching through their gene bank for a variety of beans grown in warmer climates, ones that required minimal water and withstood harsh temperatures.

“Even if they can only handle a three-degree rise, that would still limit the land lost to climate change to about 5%,” according to Beebe. He tested over a thousand different samples, before finally finding the right one: the tepary bean, which was cultivated in the New World well before the arrival of Columbus, in portions of what is now northern Mexico and Arizona. In order to preserve the heat resistant traits o the bean, Beebe tried cross variation with more commonly known beans: pintos as well as, white, black and kidney beans.

The new cross-breeds were planted by him and his team in plots throughout Colombia’s humid coast overlooking the Caribbean Sea. For a more accurate read on how much heat their new crossbreeds could tolerate, they grew another plot in CIAT’s greenhouses, allowing them to control the climate. The results gave everyone a pleasant surprise. While some of these cross variations were able to withstand rises of 3°C, others showed tolerance against temperatures that were above 4°C. Now, not only do they have a variety that can make use of land where climate change is already bringing about crop failures, but also one that can avert potential famines in the near future. “Even if they can only handle a three-degree rise, that would still limit the land lost to climate change to about 5%”, said Beebe.

The CIAT was founded during a time that scientists suspected the world’s food sources were depleting – a reaction to the rapidly climbing population levels. However, their fears were not completely unwarranted. Both India and China had withstood droughts, destroying their harvests of wheat and rice. The American biologist Norman Borlaug led a team of scientists to develop a new, modified crop variety – giving India not only enough of a domestic supply but also plenty of room for a surplus that allowed them to trade with local countries. Borlaug won the Nobel Prize for his effort, which led to Asia becoming an expanding economic power.

The basic techniques that Borlaug employed are still being used by today’s geneticists. With selective breeding, biologists are able to cross-pollinate plants with different desirable traits until they develop generation that is durable against pests, heat, and dry seasons. Because these effects sometime require the effects of various genes acting together, the process can be a bit more assiduous than any description makes it seem. “It’s a bit like crossing a house cat with a wildcat”, is the favorite analogy of CIAT’s researchers. “You don’t automatically get a big docile pussycat. What you get is a lot of wildness that you probably don’t want lying on your sofa.”

The possibilities of a second era of revolution as significant as the one led by Borlaug seem fairly unlikely, as today there is less agricultural biodiversity than there once was. The tepary bean is one of those ancient wild ancestors of the supermarket shelf crops we know today. It and plants like it keep hidden a wide array of genetic traits, many of which could anticipate the needs of a future crisis, depending on whether gene banks like the one at CIAT continue to be well-maintained.

Only around five percent of the natural growing relatives of some of our most important crops are being properly safeguarded. While this sounds reasonable, the truth is a bit more complicated, as are the implications of maintaining. CIAT spends a million dollars annually on their electricity alone for keeping genetic material chilled. In that time, it is also constantly at risk from wars and disasters. Their sister organization is located in Syria and had to send over 80% of its collected samples abroad, preventing any damage that might occur during its civil war. A maize seed bank kept in Honduras was destroyed back in 1998 by Hurricane Mitch, and a fire destroyed a national seed bank kept by the Phillippines’ government back in January 2012. Therefore, CIAT sends off different seeds in small quantities to banks across the globe for safekeeping.

Then there are those that aren’t properly safeguarded, potentially facing extinction in the decades to come, as new variations come along and climates begin to alter. CIAT’s gene bank is already 40 years old and in dire need to be upgraded to a larger facility. The organization hopes to raise $25 million for a new, publicly accessible facility that will not only properly preserve its samples, but also raise public awareness to the significance of its mission.

James Sullivan
James Sullivan is the assistant editor of Brain World Magazine and a contributor to Truth Is Cool and OMNI Reboot. He can usually be found on TVTropes or RationalWiki when not exploiting life and science stories for another blog article.

An Interview With 3D Printed Food Artist Chloe Rutzerveld

Chloé shines in this interview about the future of food design and her upcoming year, including SXSW and developing 3D-printed prototypes into a culinary reality.

Eindhoven University of Technology Graduate, Chloé Rutzerveld, designed a food I don’t quite know how to categorize. I first saw pictures of her most recent work, Edible Growth, last week and immediately wrote to her. Her Edible Growth concept involves a bunch of hot topics in current scientific thought but the pictures don’t put the technology first – they just look great. In fact the pictures are currently the point of the project. There are tons of details that need to be worked out, and Rutzerveld is spending the upcoming year getting the funding, awareness and support to develop this project into a realistic restaurant menu item. 3d printing technology is a frontier she is willing to jump way into. Read more about Edible Growth on Rutzerveld’s website.

Chloé answered a ton of questions below


The current concept art looks great. What was the initial idea behind these great looking confections?

The shape of the edible developed and changed throughout the design process, influenced by development in the technological and biotechnological parts of the project. For example, at first, I made drawings of Edible Growth in which the entire ball was filled with wholes. Which doesn’t make sense because cresses and mushrooms don’t grow down, only up 😉

3d printed food

Chloé’s initial, all-plastic design showed plants and mushrooms growing in all directions but the final design with real food had to accommodate gravity with a modified design.

Also, when the product is printed, you see straight lines, showing the technology part.. when the product matures these straight technological lines become invisible by the organic growth of the product. Showing the collaboration between technology and nature. Technology in this project is merely used as a means to enhance natural processes like photosynthesis and fermentation.

Chloe RutzerveldWhat inspired you? 

My skepticism towards printing food and the urge to find some way to use this new technology to create healthy, natural food with good a good taste and structure in which the printer would add something to the product, as well as the environment.

3d printen

A 3d printer arranges dough for the first step of an edible growth prototype.

Once you had the idea, how long did it take you to produce the prototypes and pastries we can see in the photos?

At first I made a lot of drawings and prototypes form clay. After that I started using nylon 3d-printed structures. When I gained more knowledge about 3d printing and the material composition inside the structure, the design of the product changed along with that. The mushrooms and cress inside the prototypes, as well as the savory pie dough is just a visualization, the final product might be totally different. It’s mend as inspiration and showing that we should think beyond printing sugar, chocolate and dough if we want to use this technology to create future ‘food’.

The prototyping process took about 2 months I think.. and multiple museums asked if they could exhibited it, I made non-food, food products that would last longer.


What are you doing for a living? 

Haha great question, because as you probably understand, media attention is great but does not help me pay my bills unfortunately 😉 But it does make it easier to get assignments for the development of workshops, dinners etc.

Basically at this point, I give lectures, presentations, and organize events and dinners. One upcoming event I’m organizing is about my new project called “Digestive Food”. I will not say too much about it, but I’ll update my website soon;)

To have a more stable income, I started working for the Next Nature Network in February, to organize the Next Nature Fellow program! Next Nature explores the technosphere and the co-evolving relationship with technology

Edible GrowthHow did you find the project so far?

Well I personally think it looks beautiful and I’m quite proud that so many people are inspired and fascinated by it! It would be great if such a product would come on the market.

I wonder what the pastry and edible soil are made of. Can you talk about the ingredients? 

I don’t call it edible soil, but a breeding ground. Because everything must be edible (like a fully edible eco-system) we experimented with a lot of different materials. But in the end, we found that agar-agar is a very suitable breeding ground on which also certain species of fungi and cress (like the velvet-paw and watercress for example) can grow very easily within a few days without growing moldy!


Agar-agar breeding ground turned out to be the right mix of versatility and food-safe materials to make Edible Growth go from plastic prototype to edible reality.

How do you feel about copyright and patented ideas?

I am not very interested in that part.. of course it’s good to get credits for the idea and the photo’s but I will not buy a patent. I don’t have the knowledge or employees to develop this concept into a reel product. So I actually hope someone steels the idea and starts developing it further :)! I’m often asked by big tech-companies or chefs if I wanted an investment to develop it… but to be honest.. I’ve many other ideas and things I would like to do.

Edible prototype  - Copy

Do  you have secret ingredients?

Haha not in the product, but in my work it would be passion, creativity and a pinch of excessive work ethos 😉

What types of foods have you experimented with?

For Edible Growth? A dozen of cresses, and other seeds, dried fruits and vegetables for the breeding ground, agar-agar, gelatins, some spores..

But for my other projects also with mice, muskrat, organ meat, molecular enzymes etc.


Who have you been working with? 

Waag Society (Open Wetlab, Amsterdam), Next Nature (Amsterdam), TNO (Eindhoven & Zeist), Eurest at the High Tech Campus (Eindhoven)

What is your studio environment like? 

I actually still live in a huge student-home which I share with 9 other people. But because I almost graduated one year ago I will need to move out. So I work a lot at home, in my 16m2 room, in the big-ass kitchen downstairs,  if I have appointments somewhere I afterwards work in a café or restaurant with wi-fi, or at flex work places, my parents house.. I’m very flexible and can work almost everywhere 🙂 Practical work I’ll do mostly at home obviously.

But I am looking for a nice studio in Eindhoven, that’s easier to receive guests or people from companies.

 What steps need to happen before we start seeing 3D printed food become commercially available? Development of software, hardware and material composition.

I noticed on your website you have other projects in the works. What are you doing currently? What are your upcoming plans and goals for 2015? 

Next week I’ll go to SXSW. In the summer I’m going to Matthew Kenney Culinary academy to learn more practical and theoretical things about food (and secretly just because I absolutely love to learn about plating and menu planing). I’m developing this event I told you about for the Museum Boerhaave in Leiden and the E&R platform. And when I return from Maine, I actually want to set up a temporary pop-up restaurant at the Ketelhuisplein during the Dutch Design Week 2015 about a social or cultural food issue.

Thanks again, Chloé~! This was fun!!!

Jonathan Howard
Jonathan is a freelance writer living in Brooklyn, NY