Category Archives: Electronics

Polaroids Portable Pocket Printers Make On-The-Go Printing Easy


This article is part of a series:
12 Awesome New Gadgets On The Market Today

8. Portable Pocket Printers

When I first saw these in the store, I was amazed to say the least. You can share photos with people from your phone at any time, it seemed so obviously needed in today’s on-the-go society. Since then, I’ve seen this gadget used in a variety of creative ways: at parties, at family gatherings, in art displays.. I even saw a guy selling prints of photos he took on the spot of tourists in Central Park!

NEXT
8 of 12

Virtual Reality 3D Glasses For Smartphones Are Really Cool


This article is part of a series:
12 Awesome New Gadgets On The Market Today

9. KREN 3D IMAX VR Virtual Reality Headset 3D VR Glasses For 4~6 inch Smartphones for 3D Movies and Games

We finally reached the point in time where movie glasses are not only a reality but affordable and plentiful. Watch movies and TV in your own little private theater right on your face! What’s more is this is used with your smartphone. How cool is that?!

 

NEXT
9 of 12

Sorry Nerds, There’s No Warp Drive


It makes for a sensational headline but NASA didn’t even come close to discovering warp technology.

The mechanism behind their fuel-free propulsion has no clear link to warping space-time. In fact, space-time is not proven or understood to exist as a material substance able to warp. It’s all nonsense. So what really happened?

Richard Feynman once said: “The first principle is that you must not fool yourself – and you are the easiest person to fool.”

You should have been suspicious when the story made the rounds on social media. The headlines were claiming NASA successfully tested something called the EM Drive. The EM drive is awesome, and it’s real science. It’s a propulsion engine doesn’t use propellant, which seems to violate the laws of physics by creating a reaction with no initial action.

First, let’s examine the actual finding. NASA has developed a hollow device that can be  pumped full of electromagnetic radiation which reflects back-and-forth, tapped inside the chamber, generates thrust, causing the device to accelerate in a direction based onthe shape of the chamber. You might ahve seen the story or similar reports over the last year because iterations of it have been built by Roger Shawyer (the EM Drive), one from a Chinese group led by Juan Yang, and one from Guido Fetta (the Cannae Drive), all claiming successful thrust. The stories on science news sites claim the acceleration created is caused by warped space of an Alcubierre Drive, the completely fictional “Star Trek” design.

Here are some problems. First off, none of the tests showed results from gadations in power. If this is a viable prototype for an engine, the science behind it hasn’t proven why a tiny acceleration in relation to a huge amount of relative power is worth any sort of real consideration for space travel. It’s a weak engine with no sign of how it can be scaled.

Secondly, the thrust they created is so small it might just be a mistake in mathematics or caused by an unknown factor, unrelated to warp tech. A true test requires an isolated environment, with atmospheric, gravitational and electromagnetic effects removed from the equation.

Thirdly, good science is reproducible. These tests lack a transparent design so no one else can verify that this actually works.
Finally, a real report has to be created that can be peer-reviewed and understood before irresponsibly publishing the claims.

Optimism of this sort, claiming to be able to put people on mars with a warp engine, is not scientifically valid. This latest group declared they have broken the previously-held laws of physics. They assume we can scale up and implement this engine for space propulsion just because of some questionably positive results. They claim to be distorting space, they claim they might be causing light to go faster by approximately 10^-18 m/s. They made these claims without actually proving them, and told the general public, spreading misinfo.

Harold “Sonny” White at NASA, has made extraordinary claims about warp drive in the past. He is totally the kind of guy who would jump to warp drive as a conclusion. There is nothing in NASA’s report that shows they’ve created a warp drive. Sorry, Star Trek and Star Wars fans. Most likely this is a public relations move to get America and the world science communities more excited about space travel and science education.

Jonathan Howard
Jonathan is a freelance writer living in Brooklyn, NY

The future of Auto Theft


We live in a time where auto theft is incredibly impractical. Criminals in 2015 struggle to figure out how to get past electronic security and alarm systems,  reflecting an over 90% drop in NYC auto theft since the early 90’s. These days, even a successfully stolen vehicle can be recovered with GPS tracking and incidences of theft are often caught on video.

It might seem like convenience is weakness but since car theft is way down,  this might not hold true at the moment. The security holes that seem most vulnerable to exploitation revolve around a key fob. Fobs are those small black electronic keys that everyone uses to unlock their car these days.  They work by using A pre-determined electronic signal that must be authenticated by the CAN system. If the authentication checks out, the doors unlock. In newer cars, the engine will start via push button if the fob is in the immediate vicinity of the car so the driver doesn’t have to fish them out of her pocket.

Etymology of the word fob:  Written evidence of the word's usage has been traced to 1888. Almost no one uses a pocket watch these days but a fob was originally an ornament attached to a pocket watch chain. The word hung around as an ocassional, outdated way to refer to key chains. In the 80's, the consumer market was introduced to devices that allowed a car to be unlocked or started remotely. The small electronic device was easily attached to the conventional set of carkeys, and within a few years the term fob key was generally used to describe any electronic key entry system that stored a code in a device, including hotel keycards as well as the remote car unlocking device usually described by the word.
Let’s take a look at three ways a fob key can be hacked.

Recording FOB signals for replay. This is one of those urban legends that’s been around since at least 2008. The story goes: thieves record the key fob signal and can later replay it with a dummy fob. The car can’t tell the difference and unlocks/starts as if the correct key fob has been used. It’s easy for the thief to control the schedule and catch the victim unawares because it doesn’t have to interact with the fob in real time. Sounds like the most effective way to hack a key fob, right? Problem is, each signal is unique, created with an algorithm than includes time. If the devices are not synchronized the fob can’t open the lock. A recorded signal played back wouldn’t open the lock. The conventional wisdom is that the devices, proprietary knowledge and experience needed to make this method work are not worth a stolen car’s worth of risk. Secrets leak but honestly, a team organized enough to steal a car this way would be able to use the same skills to make a lot more money legally. Lastly, if you could reverse engineer and record fob signals the FBI would already be watching you. The demographic that used to steal cars in the 90’s were largely  not like the fast and furious franchise.  The idea that a huge tech security op could be thwarted isn’t necessarily far fetched but there are no recorded cases. Not one. For that to change, someone needs to figure out how the sync code is incorporated into the algorithm and apparently no one has.

Amplifying FOB signal to trigger auto unlock feature. Not only is this method genius but it is rumored to be already in use. Eyewitnesses claim to have seen this in use and it sparked theories about the methodology. Unlike recording a signal, amplification is a lot cheaper and requires almost no proprietary knowledge of the code to pull off. It works like this: A device picks up a range of frequencies that the key fob is giving off and increases the range. Some cars feature the ability to sense the authentic key fob in a five foot range and auto-unlock or autostart their ignitions. With a signal amp, the engine can theoretically be started if the real key fob is within 30 feet. So, the keys can be on your nightstand but the car thinks you are at the car door. The thief can then open the door, sit in the drivers seat and the ignition can be pushbutton triggered as if the key fob was in the car with the thief. I thought about repeating some of the anecdotes I found online about this method but none of them are confirmed. No one has tested it but it looks like a signal booster can be bought online for pretty cheap if you know what to buy($17 – $300). Last week, NYT ran a piece about signal boosting. You can read that here.

Random signal generator. So unique frequency codes means you can’t record  the signal and reuse it without a proprietary algorithm but signal amplification might not work on some systems in the near future. The rumors of it working successfully already have car companies working on a sensitive enough receiver that it would be sensitive to distortion and interference caused by the amp. But there are exceptions, where the signal is not random, such as a service codes. Manufacturers have overriding unlock codes and reset devices to assist with lost key fobs and maintenance/emergency cases. When these codes are leaked, they often open up a brief but large hole in security, during which thousands of cars can be swiped. The main reason it isn’t happening already is more about organized crime not being organized enough to plan and exploit that security hole. Or, you know, maybe the codes just haven’t leaked yet.

Hardware construction.

hackrfConstructing the hardware components needed takes specialized knowledge of hardware. Searching for information about this stuff if bound to attract NSA attention when followed by parts being ordered. The kind of guy who likes to sit in a workshop ordering parts and tinkering all day isn’t always the one who wants to go out and take risks with newer, higher-end cars. That is the kind of multifaceted thief NYC was famous for back before the numbers plunged in the 90’s but the hardware is becoming more and more esoteric. People are not as apt to work on devices that have such small parts on projects that run with such high risk. For that reason, there is more money to be made in producing a bunch of low-cost black market devices that are already calibrated and tested to work. Buying this device on the street and using it before selling it off again might leave a smaller trail than building it in a sketchy apartment-turned-lab that is sure to be searched if a heist goes wrong.

Paper trail & identity theft.

Technology has made it really difficult to even take the car int he first place but once you have a stolen car they are almost impossible to get rid of these days. There can be multiple tracking devices and serial number locations in one car and if the operation isn’t extremely current, the likelihood of the car being found in red hands goes up quickly.

Once the car is stolen, a tech-savvy thief would need special equipment to access the on-board computer and do things like disable the GPS system, take any additional tracking system offline, and disable tech support from manipulating the vehicle’s electronics. Equipment to hack the car’s CAN system has been expensive and shrouded in mystery for the last couple decades but in recent days the internet has united hackers and security researchers to create custom hardware like CANtact Device Lets you Hack a Car’s CPU for $60. 

 

Jonathan Howard
Jonathan is a freelance writer living in Brooklyn, NY

Revisiting the Death of Michael Hastings


Could emerging tech present new forensics in the suspicious early demise of controversial Rolling Stone reporter, Michael Hastings? How cheaper hardware and open-sourced coding could shed new light on a murder as the possibility of remotely hacking today’s cars gains traction.

Hacking your car might already be possible. This tweet by NYT tech writer, Nick Bilton, is a great example:

Weeks back, I wrote a short piece about CANtact, a $60 device that enables you  to interface with a car’s onboard computer through your laptop’s USB port. Eric Evenchick presented CANtact at Black Hat Asia 2015 security conference in Singapore. The onboard CPU of a motor-vehicle is called the CAN, for Controller Area Network. Evenchick hopes his device’s affordability will spur programmers to reverse engineer the firmware and proprietary languages various CAN systems use.

Read more about CANtact: CANtact Device Lets you Hack a Car’s CPU for $60

I got feedback on the CANtact story about a seemingly unrelated topic: The Death of Michael Hastings. Hastings was Rolling Stone and Buzzfeed contributor who became very vocal about the surveillance state when the  U.S. Department of Justice started investigating reporters in 2013. Hastings coined the term “war on journalism” when the Obama Administration sanctioned limitations on journalists ability to report when the White House considered it a security risk. Buzzfeed ran his last story, “Why Democrats Love to Spy On Americans”, June 7, 2013. Hastings is considered suspicious by many Americans after he died in an explosive, high -speed automobile accident, June 18, 2013, in Los Angeles, CA.

Check out one of the last interviews with Michael Hastings and scroll down for a description of the oft repeated conspiracy theory surrounding his untimely death.

The Michael Hastings Conspiracy Theory:

Unlike a lot of post-millennium conspiracy theories, which usually start online, this one actually began on television. Reporters were already contentious about the limitations the Obama admin. were attempting to impose and it seemed like extremely suspicious timing that one of the leaders of the criticism against censorship was suddenly killed. The internet ran with it and some Americans considered the crash as suspicious at the time. Public opinion is often without the merit of hard evidence, though, and this case was no different. Not everyone considered the media coverage unbiased, considering the political stake journalists had in the issue.

The first solid argument that Hasting didn’t die by accident came from Richard A. Clarke, a former U.S. National Coordinator for Security, Infrastructure Protection, and Counter-terrorism(what a title~!), who called the crash “consistent with a car cyber attack”. The conspiracy theory gestating around water coolers and message boards was truly born when Clarke went public with this outright accusation:

“There is reason to believe that intelligence agencies for major powers—including the United States—know how to remotely seize control of a car. So if there were a cyber attack on [Hastings’] car—and I’m not saying there was, I think whoever did it would probably get away with it.”

Next, WikiLeaks announced that Hastings reached out to a Wikileaks lawyer Jennifer Robinson only a few hours before the crash.

Army Staff Sergent Joe Biggs came forward with an email he thought might help in a murder investigation. The email was CCed to a few of Hastings’ colleagues, stating he was “onto a big story” and planned to “go off the radar”. Perhaps the most incriminating detail is that he warned the addressees of this email to expect a visit from the FBI. The FBI denied Hastings was being investigated in a formal press release.

LA Weekly admitted Hastings was preparing a new installment of what had been an ongoing story involving the CIA. Hastings’ wife, Elise Jordan, confirmed he had been working on a story profiling CIA Director John O. Brennan.

 

The case against foul play:

I have to admit, I got sucked in for a second but Cosmoso is a science blog and I personally believe an important part of science is to maintain rational skepticism. The details I listed above are the undisputed facts. You can research online and verify them. It might seem really likely that Hastings was onto something and silenced by some sort of foul play leading to a car accident but there is no hard evidence, no smoking gun, no suspects and nothing really proving he was a victim of murder.

The rumor online has always been that there are suspicious aspects to the explosion. Cars don’t always explode when they crash but Frank Markus director of Motor Trend said the ensuing fire after the crash was consistent with most high-speed car crashes. The usual conspiracy theorist reaction is to suspect this kind of testimony to have some advantage or involvement thus “proving” it biased. It’s pretty difficult to do that in the case of Frank Markus, who just directs a magazine and website about cars.

Hastings’ own family doesn’t seem to think the death was suspicious. His brother, Jonathan, later revealed Michael seemed “manic” in the days leading up to the crash. Elise Jordan, his wife told the press it was “just a really tragic accident”

A host of The Young Turks who was close with Hastings once said Hastings’ friends had noticed he was agitated and tense. Michael often complained that he was being followed and watched. It’s easy to dismiss the conspiracy theory when you consider it may have stemmed from the line of work he chose.

Maybe the government conspiracy angle is red herring.

Reporting on the FBI, the Military, the Whitehouse, or the CIA are what reporters do. People did it before and since. Those government organizations have accountability in ways that would make an assassination pretty unlikely.

If it wasn’t the government who would have wanted to kill Hastings?

A lot of people, it turns out. Hastings had publicly confirmed he received several death-threats after his infamous Rolling Stone article criticizing and exposing General McChrystal. Considering the United States long history of reactionary violence an alternate theory is that military personnel performed an unsanctioned hit on Hastings during a time when many right wing Americans considered the journalist unpatriotic.

Here’s where the tech comes into play:

Hastings had told USA Today his car had recently been “tampered with”, without any real explanation of what that means but most people in 2013 would assume it means physical tampering with the brakes or planting a bug. In any case he said he was scared and planned to leave town.

Now it’s only two years later, and people are starting to see how a little bit of inside knowledge of how the CAN computer works in a modern vehicle can be used to do some serious harm. We might never know if this was a murder, an assassination or an accident but hacking a car remotely seemed like a joke at the time; two years later no one is laughing.

Jonathan Howard
Jonathan is a freelance writer living in Brooklyn, NY

Carbon3D’s CLIP: Faster than Any Other 3D Printing System – and Cooler Looking!


A picture is worth a thousand words with CLIP 3D’s laser-cured liquid printing.

3D printing is one of the best up and coming tech fields to follow. CLIP 3D Printing is the fastest device to date. Designers and engineers are starting to rely on 3D printing to stay competitive but the process is far from streamlined. Companies like Carbon3D are ahead of the pack with the coolest looking printing process that just happens to also be faster than anyone else out there. By rethinking the way the resin is cured, Carbon3D got their newest printer to produce 25-100 times faster than any other resin printing techniques, as of early 2015. It’s like they just couldn’t decide between fast an beautiful.

Peep the video at the bottom of this article~!

3Dprint.com broke the story, announcing Carbon3D’s Continuous Liquid Interface Production technique. CLIP built off of the most innovative ideas that have already been done with 3D printing  by utilizing photosensitive resin and an incredibly precise laser to cure the liquid into a solid from the bottom of a clear pan. Inspired by techniques which print and cure layer-by-layer, CLIP instead uses it’s laser to cure in conjunction with oxygen which inhibits the curing process allowing for variable ratios of viscosity. This allows the printer to print in 3 dimensions simultaneously.

DIAGRAM OF CLIP

You can see the liquid from the top in the promotional media but the action happens underneath the pool. The transparent window that holds the pool of liquid “ink” is also oxygen-permeable. This allows controlled amounts of oxygen and laser light to hit the bottom of the liquid layer.  Carbon3D  explains the process can leave uncured spots on the bottom layer as little as a few dozen microns thick. As the oxygenated areas of the resin are decided, the laser cures the unoxygenated areas, leaving a layer of solid that is attached to the layer above. This amazing GIF speaks for itself. DAYUM:

Carbon 3D has managed to keep a proprietary amount of this technique secret while still nailing down $41 million in funding from venture capital firms. It’s almost like they 3D printed themselves from liquid into the solid competitive start-up they are today.

As the fastest guys on the scene Carbon3D are the hottest new guys. The slow production speed is one of the biggest reasons 3D printing hasn’t become the manufacturing norm and CLIP printing is expected to change that moving forward from early 2015. Cosmoso.net is watching this fascinating development on the edge of our 3D printed seats.

Jonathan Howard
Jonathan is a freelance writer living in Brooklyn, NY

The Computer of the Future is…. Vague.


Quantum Computer prototypes make mistakes. It’s in their nature. Can redundancy correct them?

Quantum memory promises speed combined with energy efficiency. If made viable it will be used in phones, laptops and other devices and give us all faster, more trustworthy tech which will require less power to operate.  Before we see it applied, the hardware requires redundant memory cells to check and double-check it’s own errors.

All indications show quantum tech is poised to usher the next round of truly revolutionary devices but first, scientists must solve the problem of the memory cells saving the wrong answer. Quantum physicists must redesign circuitry that exploits quantum behavior. The current memory cell is called a Qubit. The Qubit takes advantage of quantum mechanics to transfer data at an almost instantaneous rate, but the data is sometimes corrupted with errors. The Qubit is vulnerable to errors because it is physically sensitive to small changes in the environment it physically exists in. It’s been difficult to solve this problem because it is a hardware issue, not a software design issue. UC Santa Barbara’s physics professor John Martinis’ lab is dedicated to finding a workaround that can move forward without tackling the actual errors. They are working on a self-correcting Qubit.

The latest design they’ve developed at Martinis’ Lab is quantum circuitry that repeatedly self-checks for errors and suppresses the statistical mistake. Saving data to mutliple Qubits and empowering the overall system with that kind of desirable reliability we’ve come to expect from non-quantum digital computers. Since an error-free Qubit seemed last week to be a difficult hurdle, this new breakthrough seems to mean we are amazingly close to a far-reaching breakthrough.

Julian Kelly is a grad student and co-lead author published in Nature Journal:

“One of the biggest challenges in quantum computing is that qubits are inherently faulty so if you store some information in them, they’ll forget it.”

Bit flipping is the problem dejour in smaller, faster computers.

Last week I wrote about a hardware design problem called bit flipping, where a classic, non-quantum computer has this same problem of unreliable data. In effort to make a smaller DRAM chip, designers created an environment where the field around one bit storage location could be strong enough to actually change the value of the bit storage location next to it. You can read about that design flaw and the hackers who proved it could be exploited to gain system admin privileges in otherwise secure servers, here.

Bit flipping also applies to this issue in quantum computing. Quantum computers don’t just save information in binary(“yes/no”, or “true/false”) positions.  Qubits can be in any or even all positions at once, because they are storing value in multiple dimensions. It’s called “superpositioning,” and it’s the very reason why quantum computers have the kind of computational prowess they do, but ironically this characteristic also makes Qubits prone to bit flipping. Just being around atoms and energy transference is enough to create unstable environments and thus unreliable for data storage.

“It’s hard to process information if it disappears.” ~ Julian Kelly.

Along with Rami Barends, staff scientist Austin Fowler and others in the Martinis Group, Julian Kelly is making a data storage scheme where several qubits work in conjunction to redundantly preserve information. Information is stored across several qubits in a chip that is hard-wired to also check of the odd-man-out error. So, while each Qubit is unreliable, the chip itself can be trusted to store data for longer and with less, hopefully, no errors.

It isn’t a new idea but this is the first time it’s been applied. The device they designed is small, in terms of data storage, but it works as designed. It corrects its own errors. The vision we all have of a working quantum computer able to process a sick amount of data in an impressively short time? That will require something in the neighborhood of  a hundred million Qubits and each of the Qubits will be redundantly  self-checking to prevent errors.

Austin Fowler spoke to Phys.org about the firmware embedded in this new quantum error detection system, calling it surface code. It relies on the measurement of change between a duplication and the original bit, as opposed to simlpy comparing a copy of the same info. This measurement of change instead of comparison of duplicates is called parity recognition, and it is unique to quantum data storage. The original info being preserved in the Qubits is actually unobserved, which is a key aspect of quantum data.

“You can’t measure a quantum state, and expect it to still be quantum,” explained Barends.

As in any discussion of quantum physics, the act of observation has the power to change the value of the bit. In order to truly duplicate the data the way classical computing does in error detection, the bit would have to be examined, which in and of itself would potentially cause a bitflip, corrupting the original bit. The device developed at Martini’s U of C Santa Barbara lab

This project is a groundbreaking way of applying physical and theoretical quantum computing because it is using the phsycial Qubit chip and a logic circuit that applies quantum theory as an algorithm. The results being a viable way of storing data prove that several otherwise untested quantum theories are real and not just logically sound. Ideas in quantum theory that have been pondered for decades are now proven to work in the real world!

What happens next?

Phase flips:

Martinis Lab will be continuing it’s tests in effort to refine and  develop this approach. While the bit flip errors seemed to have been solved with this new design, there is a new type of error not found in classical computing that has yet to be solved: the  phase-flip. Phase-flips might be a whole other article and until Quantum physicists solve them there is no rush for the layman to understand.

Stress tests:

The team is also currently running the error correction cycle for longer and longer periods while monitoring the devices integrity and behavior to see what will happen. Suffice to say, there are a few more types of errors than it may appear, despite this breakthrough.

Corporate sponsorship:

As if there was any doubt about funding…. Google has approached Martinis Lab and offered them support in effort to speed up the day when quantum computers stomp into the mainstream.

Jonathan Howard
Jonathan is a freelance writer living in Brooklyn, NY