Category Archives: Brain Computer Interface

Understanding Cognitive Bias Helps Decision Making


in·tu·i·tion
ˌint(y)o͞oˈiSH(ə)n/
noun
noun: intuition
  1. the ability to understand something immediately, without the need for conscious reasoning.

People tend to trust their own intuition. Has there been much formal study about the veracity of intuition?

Brain science itself is a young field, and the terminology has yet to mature into a solid academic lexicon. To further increase your chances of being confused, modern life is rife with distractions, misinformation, and addictive escapisms, leaving the vast majority of society having no real idea what the hell is happening.

To illustrate my point, I’m going to do something kind of recursive. I am going to document my mind being changed about a deeply held belief as I explore my own cognitive bias. I am not here to tell you what’s REALLY going on or change your mind about your deeply held beliefs. This is just about methods of problem solving and how cognitive bias can become a positive aspect of critical thought.

Image: "Soft Bike" sculptiure by Mashanda Lazarus http://www.ilovemashanda.com/

Image: “Soft Bike” sculptiure by Mashanda Lazarus
http://www.ilovemashanda.com/

I’m advocating what I think is the best set of decision making skills, Critical Thought. The National Council for Excellence in Critical Thinking defines critical thinking as the intellectually disciplined process of actively and skillfully conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication, as a guide to belief and action. (I’m torn between the terms Critical Thinking and Critical Thought, although my complaint is purely aesthetic.)

Ever since taking an introduction to Logic course at Fitchburg State college I have been convinced that Logic is a much more reliable, proven way to make decisions. Putting logic to practice when decision-making is difficult, though. Just like a math problem can be done incorrectly, Some logic can even counter-intuitive. My favorite example of intuition failing over logic is always chess. Even as I write this I can’t convince myself otherwise: I have regretted every intuitive chess move. It’s statistically impossible that all my intuitive moves have been bad moves yet logic works in the game so much better that my mind has overcompensated in favor of logic. In the microcosm of chess rules, logic really is the better decision-making tool. Often the kernel of a good move jumps out at me as intuition but then must still be thoroughly vetted with logic before I can confidently say it’s a good move.

In high school, I was an underachiever. I could pass computer science and physics classes without cracking a book. My same attempt to coast through math classes left me struggling because I could not intuitively grasp the increasingly abstract concepts. The part of my mind that controls logic was very healthy and functioning but my distrust for my own intuition was a handicap. I would be taking make up mathematics courses in the summer but getting debate team trophies during the school year.

duchamp

Photograph of Marcel Duchamp and Eve Babitz posing for the photographer Julian Wasser during the Duchamp retrospective at the Pasadena Museum of Art, 1963 © 2000 Succession Marcel Duchamp, ARS, N.Y./ADAGP, Paris.

I’m not just reminiscing; everyone’s decision making process is an constantly-updating algorithm of intuitive and logical reasoning. No one’s process is exactly the same but we all want to make the best decisions possible. For me it’s easy to rely on logic and ignore even a nagging sense of intuition. Some people trust intuition strongly yet struggle to find the most logical decision; everyone is most comfortable using a specially-tailored degree of intuition and logic. People argue on behalf of their particular decisions and the methodology behind them because a different method is useful in for each paradigm.

In chess, intuition is necessary but should be used sparingly and tempered with logic. It’s my favorite example because the game can be played without any intuition. Non-AI computers are able to beat the average human at chess. Some AI can beat chess masters. So, I’m biased towards logic. Chess is just a game, though. People are always telling me I should have more faith in intuitive thinking.

“But,” you should be asking, “Isn’t there an example of reliance on intuition as the best way to decide how to proceed?”

At least that’s what I have to ask myself. The best example I found of valuable intuition is the ability to ride a bike. It is almost impossible to learn to ride a bike in one session; it takes several tries over a week or longer to create the neural pathways needed to operate this bio-mechanical device. Samurais trained to feel that their weapon was part of themselves, or an extension of their very arm.  The mechanical motion of  the human body as it drives a bicycle becomes ingrained, literally, in the physical brain. The casual, ubiquitous expression, “It’s like riding a bike”, is used to idiomatically describe anything that can be easily mastered at an intermediate level, forgotten for years, but recalled at near perfect fidelity when encountered once again.

The Backwards Brain Bicycle – Smarter Every Day episode 133

Destin at Smarter Everyday put together a video that shows the duality of intuitive thinking. It is completely possible to train the human mind with complicated algorithms of decision making that can be embrace diversification and even contradictory modes of thinking.

Cont. below…

After watching this video, I embraced a moment of doubt and realized that there are very positive and useful aspects to intuition that I often don’t acknowledge. In this case of reversed bicycle steering, a skill that seems to only work after it has been made intuitive can be “lost” and only regained with a somewhat cumbersome level of concentration.

The video demonstrates the undeniable usefulness of what essentially amounts to anecdotal proof that neural pathways can be hacked, that contradictory new skills can be learned. It also shows that a paradigm of behavior can gain a tenacious hold on the mind via intuitive skill. It casts doubt on intuition in one respect but without at least some reliance on this intuitive paradigm of behavior it seems we wouldn’t be able to ride a bike at all.

This video forced me to both acknowledge the usefulness of ingrained, intuitive behaviors while also reminding me of how strong a hold intuition can have over the mind. Paradigms can be temporarily or perhaps permanently lost.  In the video, Destin has trouble switching back and forth between the 2 seemingly over-engaging thought systems but the transition itself can be a part of a more complicated thought algorithm, allowing the mind to master and embrace contradictory paradigms by trusting the integrity of the overall algorithm.

Including Confirmation Bias in a greater algorithm.

These paradigms can be turned on and off and just as a worker might be able to get used to driving an automatic transmission car to work and operating a stick shift truck at the job site and drive home in the automatic again after the shift.

This ability to turn on and off intuitive paradigms as a controlled feature of a greater logical algorithm requires the mind to acknowledge confirmation bias. I get a feeling of smug satisfaction that logic comprises the greater framework of a possible decision making process anytime I see evidence supporting that belief. There are just as many people out there who would view intuition as the the framework of a complex decision making process, with the ability to use or not use logical thought as merely a contributing part of a superior thought process. If my personal bias of logic over intuition is erroneous in some situations, can I trust the mode of thinking I am in? Using myself as an example, my relief at realizing data confirms what I have already accepted as true is powerful.

That feeling of relief must always be noted and kept in check before it can overshadow the ability to acknowledge data that opposes the belief. Understanding confirmation bias is the key to adding that next level to the algorithm, in the video example from Smarter Everyday, steering a normal bike is so ingrained in the neural pathway that the backwards steering’s inability to confirm actually fill in the blank and the mind sends an incorrect set of instruction of the mechanical behavior to the body. Understanding the dynamics of confirmation bias would enable the mind to embrace the greater thought system that would enable the mind to go back and forth between those conflicting behavioral paradigms. I’m positing that it should be possible to master a regular bike and the “backwards bike” and be able to switch back and forth between both bikes in quick succession. The neural pathways between both behavior paradigms can be trained and made stronger than the video shows.

I believe that with practice, someotrciksne could alternate steering mechanism quickly and without as much awkwardness as we are seeing in the video just as my initial confirmation bias, now identified, doesn’t have to dictate my decision and I might be more open minded to an intuitive interpretation leading to the best decision in certain situations.

An inability to acknowledge that one’s own mind might be susceptible to confirmation bias paradoxically makes one more susceptible.  Critical thinking is a method of building immunity to this common trap of confidence. Identifying the experience of one’s own confirmation bias is a great way to try and understand and control this intuitive tendency.  No matter what your thoughts are regarding logic and intuition, examining one’s confirmation biases and better embracing them should lead to better decision making skills.

Jonathan Howard
Jonathan is a freelance writer living in Brooklyn, NY

Image of Brain under the influence of LSD


Lysergic acid diethylamide, AKA, LSD is probably the most famous hallucinogen. Despite the anecdotes of scary and beautiful trips, and the new age rumors of psychotropic medicinal potential, little is known about the actual, physical effects of LSD on the brain.  The drug has been under-researched, regardless of your stance on it, and in this day and age of legalization and the waning era of a completely ineffectual drug war it is hard to trust public opinion on any recreational mind altering substance. Timothy Leary’s 1960s-era writings and studies of the drug are the last true exploration – until now.

Last Summer, Carhart-Harris presented his findings after being the first UK Scientist to legally administer LSD to  human volunteers. The Misuse of Drugs Act of 1971 outlawed it for public use of any kind, including science. His presentation included a slide showing still unpublished cross-sectional brain images of a volunteer chilling in an fMRI scanner, tripping on acid. This kind of pro-LSD presentation is one of a handful from the worldwide science community that spurred the recent work of British medical researchers, lead by Imperial College London Neuropsychopharmacology Professors David Nutt and Dr Robin Carhart-Harris, who are  recording data as the drug interacts with regular healthy brains with MEG and fMRI brain scans.  It’s England’s first large-scale study of LSD in fifty years, and the first-ever study of this kind with a scientifically respectable sample size.

The study is being performed by The Beckley Foundation Psychedelic Research Programme, after crowdfunding on the website Walacea was extremely successful. The Walacea page says the money help to complete the research study which will present published results later in 2015. The crowdfunding is an important part of the story because university science budgets and government money have been slow to cover the costs of something so stigmatized by negative anecdotes.

‘Despite the incredible potential of this drug to further our understanding of the brain, political stigma has silenced research. We must not play politics with promising science that has so much potential for good’., said Prof. Nutt (Yes, that is his real name.)

LSD is in a restricted class of drugs in England where it is considered a Schedule-1 narcotic. There were a lot of legal requirements to meet before the team could get a license to use LSD on test subjects. They also needed approval from a science ethics committee to administer LSD to human subjects. After jumping through all the hoops, the researchers realized why LSD has gone so understudied. It was expensive, and they found they often had to convince people they were actually doing real science before they could get the paperwork to be taken seriously. The entire process has been slow and well-monitored, as a result.

The relatively sophisticated brain images the study hopes to produce of their subjects tripping on LSD could lead to new treatments for psychological disorders, most likely including obsessive compulsion and depression.

Jonathan Howard
Jonathan is a freelance writer living in Brooklyn, NY

Why is it so difficult to think in Higher Dimensions?


Humans can only perceive three dimensional space but theoretical math works out just fine when manipulating objects in four or more spacial dimensions. Mathematicians, scientists and philosophers still debate whether higher spacial dimensions actually exist.

It’s hard to imagine higher dimensions. Even one additional spatial dimension is hard to see with your inner mind’s eye. If you want to imagine six, seven or eight spacial dimensions it isn’t just hard – no one’s even truly conceptualized hyperspace. It’s what makes the subject compelling but also what makes it frustrating to talk about. The examples theorists are able to use to help people “visualize” what can’t be seen must work within human limitations, and are thus second and third dimensional examples of a higher dimensional concept or object.

“Wait a second,” some of you are wondering, “Isn’t TIME the fourth dimension?”
This article is about spacial dimensions only. Personally, I agree with Amrit Sorli and Davide Fiscaletti’s work which I feel adequately proves that time is NOT a spacial dimension. If you want to debate this issue further, you can read my reasoning in my follow up piece, Time: fourth dimension or nah?, also available on Cosmoso.net

One of the most basic exercises in multidimensional theory is to imagine moving in a fourth. The distance between you and everything around you stays the same but in some fourth dimension you are moving. Most people can’t truly do this imagination game because there in nothing in our three spacial dimensions to compare the experience to.

Flatland_sphereFlatland

In the famous book about spacial dimensions, Flatland, living, two-dimensional beings existed in a universe that was merely two dimensions.  A being with three dimensions, such as a sphere, would appear as a circle able to change circumference as it moved through a third dimension no one in flatland has ever conceptualized.

Humans evolved to notice changes in our three-dimensional environment, inheriting our ancestors ability to conceptualize space in three dimensions as a hardwired trait that actually stops us from conceptualizing other aspects of reality that might nonetheless  exist. Other people see hyperspace as a theoretical construct of mathematics that doesn’t describe anything in reality, pointing to the lack of evidence of other dimensions.

Tesseracts Predate Computer-assisted Modelling.

A Tesseract. Many people in the advanced math classrooms of my generation of high school students struggled to wrap their heads around tesseracts without moving diagrams. If a picture is worth a thousand words are we talking animated gifs and words used to describe three dimensional space or should we make up a new saying?

We are able to conceptualize three dimensions in the abstract when we watch TV, look at a painting, or play a video-game. Anytime we look at a screen we watch a two dimensional image from a point outside that dimension. Having an outside point of view for a three dimensional space could give us a way to artificially understand a higher spatial dimension. Until that time comes, we are sort of stuck explaining fourth dimensions by demonstrating how it would look on a two dimensional screen which we view from a third dimensional viewpoint.

It’s kind of like imagining “one million”; you can prove it mathematically to yourself, you can count to it and you know how valuable it is but you can’t truly picture one million of anything. Trying to explain this conceptualization problem with words is pretty tough because your brain is not equipped to handle it. Humans try to wrap their minds around it and dream up ways to explain hyperspace to each other anyways.

4D Rubix Puzzle

A rubix cube is particularly compelling as a multi-dimensional teaching tool, because it puts spacial dimensions in the abstract in the first place, and then gives the cube the ability to change the dimensional orientation of a third of it’s mass. It’s hard to wrap your head around a normal three dimensional rubix puzzle. By adding another dimension and using the same principle, one can ALMOST imagine that fourth spacial dimension. Most people can’t solve a three dimensional Rubix puzzle but if you think you are ready for the fourth dimension, you can download it and play it on your two dimensional screen, here: Magic Cube 4D

If you don’t think you’re ready to try and solve that puzzle but you want to know more you can watch this roughly 1/2 hour video about it:

Miegakure

While Miegakure is still under development, it’s set for release in 2015. Interactive games like this can spur collaborative thinking from a larger pool of collaborators – and make game developers tons of money.

If you want something a little less abstract than Rubix, check out this prototype for Miegakure, the surreal PlayStation 4 game that lets the user explore a four dimensionally capable world through three dimensional spaces that connect to each other through higher dimensions. It’s a great idea that makes everyone have the initial thought of wondering how the heck they coded it. Then the idea sinks in and you realize they wrote the code first and played with the visual manifestation as they went. It’s a great metaphor for the idea in the first place; begins as a concept rather than an observation. The essence of the argument against hyperspace actually existing is the lack of physical evidence. Unlike a ghost story or a spiritual, religious attempt to explain the supernatural, there is actually mathematical evidence that seems to make higher dimensions possible. It has logical evidence as opposed to empirical data. There are ways to observe without using human senses but it’s difficult to prove an observation of something the majority of humans have trouble even seeing with their mind’s eye, so to speak.

One day we might be able to use technology to increase our understanding of this abstract concept, and manipulate an entirely new kind of media. For now we are stuck with two and three dimensional visual aids and an mental block put in place by aeons of evolution.

 Read More about Hyperspace on Cosmoso.net~!
Jonathan Howard
Jonathan is a freelance writer living in Brooklyn, NY

Physics Concepts Intuitively Understood Through Skateboarding


People constantly manipulate technology without formal training but are not always able to explain what they know.

You probably aren’t surprised skateboarders haven’t been using proper physics terms to teach each other sick tricks. Try to wrap your head around Taylor Bray wrapping the board around his front foot while also turning his body around 360 degrees in this short youtube video:

Sometimes it’s almost like only the skater knows what’s going on with the board. As if to prove my point, the title of this video was written by someone who can’t even seem to label the trick. When I was a kid, wrapping the board around your foot like that was called an “impossible”. I originally encountered the clip on facebook with the trick labeled “front foot impossible craze”, making a total of three attempts to describe how Taylor Bray is spinning his body and the skateboard.

Here are some physics concepts Bray obviously understands without having to verbally prove himself:

Leverage. Most flip tricks start with an ollie, leveraging the board up into the air by tapping the end hard against the ground.

Friction. The top of the skateboard has grip tape to increase friction and make it stick to the soft rubber sneakers. The bottom of the skateboard has wheels to make it roll back and forth but not slide as much side to side. This trick doesn’t play to much with sliding friction but tons of tricks play with the various levels of slipperiness and stickiness a skateboard offers.

Potential energy. Bray is popping the board up with an Ollie but there’s also. A newer skateboard deck has “pop” which is basically when the wood is at its most springy. By kicking the board hard against the “ground”(in this case, the ramp), he can make the board bounce up into the air with him when he jumps. The more a skateboard is used it loses its pop.

Gravity. That brief instant where he kicks the end of the board into the ground allows him to jump and escape gravity. An Ollie let’s him bring the board up with him. Gravity always pulls things down at the same rate, making it easy to estimate how much time Bray has to perform the trick. The subsequent slow motion shots of the same trick allow the viewer to analyze the trick but the first version in the clip shows how fast gravity pulls Bray back toward the Earth, giving him about one second to pull off the impossible.

More rolling friction. When he gets the board in the air, he rolls it around his front foot. This trick was called an “impossible” when I was a kid in the 90’s but it’s basically wrapping the board around his front foot using rolling friction.

Inertia. Bray is using inertia in several ways. He is using the speed he has to travel up the ramp against gravity. He’s using the direction the ramp sent him in to help him continue up into the air after the Ollie. Inertia comes into play in a few small ways while he is in the air manipulating the board with his feet. When he finally lands, he continues in the direction he was already going, and it is important that he points the wheels in the approximate direction of that momentum so his inertia doesn’t throw him off balance.

Rotation. Bray is analyzing two different axises in quick succession. First he is rolling the skateboard around that foot in a move where the axis is outside the board itself, then he is catching it with his feet and rotating himself and the board on a vertical axis 360 degrees, landing in the same direction he was facing before the trick began.

In the box above, I stuck to physics concepts. There are additional science concepts at work in this example, such as muscle memory, spatial cognition, coordination, time perception and sense of balance.

A really common technical flip trick is the 360 flip. A 360 flip spins the board on 2 axises at once. In order to perform the move, a skateboarder has to conceptualize the simultaneous rotations before actually kicking them into place, and the rotations are often too complex for a layman to follow.

The next age of enlightenment could require humans to quickly communicate complicated concepts despite only possessing an intuitive understanding.

Consciousness and the human brain is a relatively young field of study. We are starting to understand what is happening in the brain when we perform complex physical tasks like a frontside 360 front foot impossible. Soon we might be able to identify the intuitive understanding of the related physics concepts and allow someone like Bray to access the verbal explanations of these physical principles as freely as he applies them to reality.

I’ll leave Cosmoso.net readers with this thought about language in skateboarding:

In the 90's, a newer, more symmetrical skateboard design allowed for a new school of technical flip tricks. As designs do when they've reached near perfection, the new school skateboard changes within a very narrow parameter based on current trends in skateboarding - the design has plateaued. Skate tricks are a folk art that are learned from advice from peers and pros. The communication about how to pull off a given trick comes in the form of an esoteric language that changes over time. The names for new and developing styles of tech tricks are different in different social circles, evolve and change over time, and seldom utilize proper physics vocabulary. Skateboarding remains a great way to demonstrate intuitively understood, applied physics.

 

Jonathan Howard
Jonathan is a freelance writer living in Brooklyn, NY

Mess with your Mind: The Frontier Science of Electric Brain Interfaces


Neuroscience is an exciting young field where the emerging applications are going through a unique experimental phase that show commercial promise but also render it susceptible to pseudoscientific claims. Cosmoso attempts to sort the facts from wishful thinking by examining a few aspects of BCI(Brain Computer Interface), including prototypes and outrageous claims.

EEG

ArtificialFictionBrain

Billions of polarized neurons maintain waves of electrical charges inside your head, stimulating each other with electrical impulses. Over a hundred years ago began a storied history of the EEG machine, able to monitor and prove the existence of electric brain waves. EEG machines were used to further many aspects of brain science from the significance of REM sleep to screening WWII pilots for dangerous brain seizures. Honda has been working on using the brains recordable brainwave output to control robotics and eventually vehicles.

EEG machines have been around in their present form for a few decades. EEG measures the oscillation of electrical activity in the brain and those measurements can be controlled by the owner of that brain & thus used to operate machinery.

The general idea: residual electrical activity caused by your brain can be measured on the surface of your scalp, neck and face. That data can change based on what the brain is consciously thinking. By controlling your thoughts in a certain way you can change the way the brainwaves show up in an EEG reading, and that info can be used as an input method to control various machines. A variety of commercial enterprises attempt to exploit the concept, to varying degrees of success or usefulness.

tDCS: Transcranial direct current stimulation.

Neuroscientist Jared Horvath, at the University of Melbourne, in Australia, recently debunked pseudoscience that has spawned a popular youtube trend: transcranial direct current stimulation (tDCS). Proponents of tDCS claim cognitive and behavioral benefits that enhance the brain’s ability to problem solve, learn, do arithmetic, utilize visual ability, and complete memory-based tasks. Much of the research he found was not able to be replicated by other researchers, or not attempted to be fact checked or peer reviewed. He also discovered a lot of experiments did not run a  “sham condition” control group — wherein test subjects were attached to the device that had no live current. In fact, despite the legions of DIY supporters hoping they found a new way to manipulate their own brains, Horvath said, “When I pulled out the 20 studies looking at tDCS and working memory, for example, they all found something, but they all found something different.” http://spectrum.ieee.org/biomedical/ethics/brain-hackers-beware-scientist-says-tdcs-has-no-effect

Roi Cohen Kadosh, a neuroscientist at the University of Oxford, is quick to point out that tDCS might not be nonsense, because: “This is still a young field of research so we still need to be really careful when we interpret the results from tDCS. The real results will come when we have enough data to make meaningful conclusions.”

If there turns out to be legit, predictable aspects of tDCS, it opens the possibility of a brain-computer interface being a 2-way street. The current tech allows EEG to measure brainwaves as user output but the input back into the user still has to be audio or visual. If there is really something to find in tDCS studies, we might eventually be able to have our brains communicate directly with a computer via electric impulses.

Youtube DIY brain hackers and commercially available snake oil:

The science behind brain manipulation is not developed enough for these products and experiments to work as claimed. Youtube has provided a ton of anecdotal evidence, though, and you can have fun going down that rabbit hole if you want. It’s basically not possible at the time I’m writing this, in early 2015, to know where to place electrodes or how much current to use. http://www.foc.us/ provides a device that claims all types of unscientific  benefits.

Commercially available products exploiting EEG readings are mostly toys and games.

From game controllers to helicopters you can control a variety of toys and games with your thoughts. It’s a fast-growing field but when the interface becomes 2-way, there will likely be a major leap forward.

 

 

 

Jonathan Howard
Jonathan is a freelance writer living in Brooklyn, NY